Образовательный портал - Varnavinschool

Лазерная обработка корневых каналов. Лазеры

Шемонаев В.И. , Климова Т.Н. ,
Михальченко Д.В. , Порошин А.В. , Степанов В.А.
Волгоградский государственный медицинский университет

Введение. В последние годы в стоматологической практике наряду с традиционными хирургическими и терапевтическими методами лечения разрабатывается и внедряется принципиально новая тактика ведения пациентов с использованием лазерных систем .

Слово лазер (laser) является акронимом слов «Light Amplification by Stimulated Emission of Radiation» (усиление света путем вынужденного излучения). Основы теории лазеров были заложены Эйнштейном в 1917 г. . Удивительно, но только через 50 лет эти принципы были достаточно поняты, и технология смогла быть реализована практически. Первый лазер, использующий видимый свет, был разработан в 1960 году – в качестве лазерной среды использовался рубин, генерирующий красный луч интенсивного света. Стоматологи, занимавшиеся исследованием влияния рубинового лазера на эмаль зубов, обнаружили, что он вызывал образование трещин в эмали. В результате был сделан вывод – лазеры не имеют перспектив применения в стоматологии. Лишь в середине 1980-х годов отмечено возрождение интереса к использованию лазеров в стоматологии для обработки твердых тканей зубов, и в частности эмали .

Основным физическим процессом, который определяет действие лазерных аппаратов, является вынужденное испускание излучения, образуемое при тесном взаимодействии фотона с возбужденным атомом в момент точного совпадения энергии фотона с энергией возбужденного атома (молекулы). В конечном итоге атом (молекула) переходит из возбужденного состояния в невозбужденное, а излишек энергии излучается в виде нового фотона с абсолютно такой же энергией, поляризацией и направлением распространения, как и у первичного фотона. Простейший принцип работы стоматологического лазера заключается в колебании луча света между оптическими зеркалами и линзами, набирающем силу с каждым циклом. Когда достигается достаточная мощность, луч испускается. Этот выброс энергии вызывает тщательно контролируемую реакцию.

В стоматологии используются лазерные аппараты с различными характеристиками.

Аргоновый лазер (длина волны 488 и 514 нм): излучение хорошо абсорбируется пигментом в тканях, таких как меланин и гемоглобин. Длина волны 488 нм является такой же, как и в полимеразиционных лампах. При этом скорость и степень полимеризации светоотверждаемых материалов лазером намного превосходит аналогичные показатели при использовании обычных ламп. При использовании же аргонового лазера в хирургии достигается превосходный гемостаз.

Диодный лазер (полупроводниковый, длина волны 792–1030 нм): излучение хорошо поглощается в пигментированной ткани, имеет хороший гемостатический эффект, обладает противовоспалительным и стимулирующим репарацию эффектами. Доставка излучения происходит по гибкому кварц-полимерному световоду, что упрощает работу хирурга в труднодоступных участках. Лазерный аппарат имеет компактные габариты и прост в обращении и обслуживании. На данный момент это наиболее доступный лазерный аппарат по соотношению цена / функциональность.

Nd: YAG лазер (неодимовый, длина волны 1064 нм): излучение хорошо поглощается в пигментированной ткани и хуже в воде. В прошлом был наиболее распространен в стоматологии. Может работать в импульсном и непрерывном режимах. Доставка излучения осуществляется по гибкому световоду.

He-Ne лазер (гелий-неоновый, длина волны 610–630 нм): его излучение хорошо проникает в ткани и имеет фотостимулирующий эффект, вследствие чего находит свое применение в физиотерапии. Эти лазеры – единственные, которые имеются в свободной продаже и могут быть использованы пациентами самостоятельно.

CO2 лазер (углекислотный, длина волны 10600 нм) имеет хорошее поглощение в воде и среднее в гидроксиапатите. Его использование на твердых тканях потенциально опасно вследствие возможного перегрева эмали и кости. Такой лазер имеет хорошие хирургические свойства, но существует проблема доставки излучения к тканям. В настоящее время CO2-системы постепенно уступают свое место в хирургии другим лазерам.

Эрбиевый лазер (длина волны 2940 и 2780 нм): его излучение хорошо поглощается водой и гидроксиапатитом. Наиболее перспективен лазер в стоматологии, может использоваться для работы на твердых тканях зуба. Доставка излучения осуществляется по гибкому световоду.

На сегодняшний день лазерные технологии получили широкое распространение в различных направлениях стоматологии, что обусловлено интра- и послеоперационными преимуществами: отсутствием кровотечения (сухое операционное поле) и послеоперационных болей, грубых рубцов, сокращением сроков продолжи­тельности операции и послеоперационного периода .

Кроме того, использование лазерных технологий нового поколения соответствует современным требованиям страховой медицины .

Цель работы – оценить возможности работы с диодным лазером на этапах стоматологического лечения.

Материал и методы: для достижения цели были проанализированы доступные литературные источники по данной тематике, а также проведена оценка клинической работы диодным лазером при различных стоматологических манипуляциях.

Результаты и обсуждения: в ходе работы изучено воздействие диодного лазера на ткани пародонта и слизистой оболочки полости рта, определены оптимальные параметры и режим воздействия излучений для каждого вида стоматологических вмешательств с учетом индивидуальных особенностей пациента.

Ориентируясь на данные, полученные отечественными и иностранными авторами , установлено, что лазеротерапия снижает индукцию про- и противовоспалительных цитокинов, угнетает активацию протеолитической системы и образование активных форм кислорода, усиливает синтез белков неспецифической иммунной защиты и обеспечивает восстановление мембран повреждённых клеток (рис. 1).

Рис. 1. Показания к применению диодного лазера

Кроме того, было проведено фотодокументирование собственных клинических стоматологических манипуляций, выполненных с применением диодного лазера.

Клиническая ситуация 1. Пациент Ч. обратился с жалобами на самопроизвольные боли в области прорезывающегося зуба 3.8, затрудненное открывание рта. Объективно в полости рта: зуб 3.8 в полуретенированном состоянии, дистальная часть окклюзионной поверхности покрыта отечным и гиперемированным слизисто-надкостничным лоскутом (рис. 2). Пациенту была проведена операция перикоронарэктомия в области полуретенированного зуба 3.8 с использованием лазера в сухом операционном поле с мгновенной коагуляцией (рис. 3).


Рис. 2. Исходная клиническая картина в области зуба 3.8.

Рис. 3. Состояние ретромолярной области после лазерной операции

Клиническая ситуация 2. На этапе протетического лечения для снятия двойного уточненного оттиска пациентке К. была проведена лазерная ретракция десны в области зубов 2.2. и 2.4. (рис. 4), после чего был зафиксирован адаптационный акриловый мостовидный протез на временный цемент RelyX Temp NE (фирмы 3М ESPE, Германия).


Рис. 4. Состояние маргинальной десны в области зубов 2.2., 2.4. после лазерной ретракции

Клиническая ситуация 3. Пациентка П. обратилась в клинику с жалобами на дефект коронки зуба 4.2. При объективном обследовании установлено наличие дефекта коронки и окклюзионное смещение десневого края в области зуба 4.2. (рис. 5). Для коррекции десневого контура в области зуба 4.2. был использован диодный лазер с последующей реставрацией коронковой части композитным материалом светового отверждения (рис. 6).


Рис. 5. Исходный уровень прикрепления маргинальной части десны в области зуба 4.2.

Рис. 6. Новый уровень прикрепления маргинальной части десны в области зуба 4.2.

Выводы. Лазеры комфортны для пациента и имеют ряд преимуществ по сравнению с традиционными методами лечения. Преимущества применения лазеров в стоматологии доказаны практикой и неоспоримы: безопасность, точность и быстрота, отсутствие нежелательных эффектов, ограниченное применение анестетиков – все это позволяет осуществлять щадящее и безболезненное лечение, ускорение сроков лечения, а, следовательно, создает более комфортные условия и для врача, и для пациента.

Показания для применения лазера практически полностью повторяют список заболеваний, с которыми приходиться сталкиваться в своей работе врачу-стоматологу.

При помощи лазерных установок успешно лечится кариес начальной стадии, при этом лазер удаляет только пораженные участки, не затрагивая здоровые ткани зуба (дентин и эмаль).

Целесообразно применять лазер при запечатывании фиссур (естественных бороздок и канавок на жевательной поверхности зуба) и клиновидных дефектов.

Проведение пародонтологических операций в лазерной стоматологии позволяет добиться хороших эстетических результатов и обеспечить полную безболезненность операции. При этом происходит более быстрое оздоровление пародонтальной ткани и укрепление зубов.

Стоматологические лазерные аппараты применяются при удалении фибром без наложения швов, проводится чистая и стерильная процедура биопсии, проводятся бескровные хирургические операции на мягких тканях. Успешно лечатся заболевания слизистой оболочки полости рта: лейкоплакия, гиперкератозы, красный плоский лишай, лечение афтозных язв в полости рта пациента.

При эндодонтическом лечении лазер применяется для дезинфекции корневого канала с эффективностью бактерицидного действия, приближенной к 100%.

В эстетической стоматологии при помощи лазера удается изменить контур десен, форму ткани десен для формирования красивой улыбки, при необходимости легко и быстро удаляются уздечки языка. Наибольшую популярность в последнее время получило эффективное и безболезненное лазерное отбеливание зубов с сохранением стойкого результата на долгое время.

При установке зубного протеза лазер поможет создать очень точный микрозамок для коронки, что позволяет не обтачивать соседние зубы. При установке имплантатов лазерные приборы позволяют идеально определить место установки, произвести минимальный разрез тканей и обеспечить наискорейшее заживление области имплантации.

Новейшие стоматологические установки позволяют проводить не только лечение зубов лазером, но и разнообразные хирургические манипуляции без применения анестезии. Благодаря лазеру заживление разрезов слизистой проходит гораздо быстрее, исключается развитие отеков, воспалений и прочих осложнений, нередко возникающих после проведения стоматологических манипуляций.

Лечение зубов лазером особенно показано пациентам, страдающим повышенной чувствительностью зубов, беременным женщинам, пациентам, страдающим аллергическими реакциями на обезболивающие препараты. Противопоказаний к применению лазера до настоящего времени выявить не удалось. Недостатком лазерного лечения зубов можно считать лишь более высокую, по сравнению с традиционными методами, стоимость.

Таким образом, использование лазера в стоматологии позволяет врачу-стоматологу рекомендовать пациенту более широкий спектр стоматологических манипуляций, отвечающих предъявляемым стандартам, что в конечном итоге направлено на повышение эффективности планируемого лечения.

Рецензенты:

Вейсгейм Л.Д., д.м.н., профессор, заведующая кафедрой стоматологии факультета усовершенствования врачей Волгоградского государственного медицинского университета, г. Волгоград.
Темкин Э.С., д.м.н., профессор, главный врач стоматологической клиники ООО «Премьер», г. Волгоград.

Список литературы
1. Абакарова С.С. Применение хирургических лазеров при лечении больных с доброкачественными новообразованиями мягких тканей рта и хроническими заболеваниями пародонта: автореф. дис. … канд. мед. наук. – М., 2010. – 18 с.
2. Амирханян А.Н., Москвин С.В. Лазерная терапия в стоматологии. – Триада, 2008. – 72 с.
3. Дмитриева Ю.В. Оптимизация подготовки зубов под современные несъемные ортопедические конструкции: автореф. дис. … канд. мед. наук. – Екатеринбург, 2012. – 15 с.
4. Куртакова И.В. Клинико-биохимическое обоснование применения диодного лазера в комплексном лечении заболеваний пародонта: автореф. дис. … канд. мед. наук. – М., 2009. – 18 с.
5. Mummolo S. Aggressive periodontitis: laser Nd:YAG treatment versus conventional surgical therapy / Mummolo S., Marchetti E., Di Martino S. et al. // Eur J Paediatr Dent. - 2008. - Vol. 9, № 2. - P. 88-92.


Статья предоставлена журналом "Современные проблемы науки и образования"

ВНИМАНИЕ! Любое копирование и размещение в сторонних источниках материалов, опубликованных на сайте WWW.сайт, возможно только при указании АКТИВНОЙ ссылки на источник. При копировании этой статьи указывайте:

С. Бенедиченти

Университет Генуи

Кафедра реставрационной стоматологии

Генуя , Италия (University of Genoa DI.S.TI.B.MO

Department of Restorative Dentistry Genoa, Italy)

Основной целью эндодонтического лечения является эффективная очистка системы корневых каналов с последующей их герметизацией.

Традиционная эндодонтическая техника подразумевает инструментальную обработку, протокол ирригации и обтурацию системы корневых каналов. Целью механической эндодонтической обработки является создание формы, очистка и полное обеззараживание системы корневых каналов.

Анатомическая сложность системы корневых каналов изучена и не вызывает сомнений: магистральный корневой канал имеет многочисленные боковые ответвления различных размеров и морфологии. Недавние исследования выявили сложное анатомическое строение системы каналов в 75% проанализированных зубов. Исследование также выявило наличие остаточной инфицированной пульпы в витальных и девитализированных зубах, которая сохранялась как в боковых дельтах, так и в апикальной части канала после завершения механической и химической обработки.

Эффективность препарирования, очистки и обеззараживания системы корневого канала ограничена анатомическими особенностями и невозможностью традиционных ирригантов пассивно проникать в боковые и апикальные дельты. Это делает целесообразным поиск новых материалов, методов и технологий, которые могут улучшить очистку и обеззараживание этих анатомических областей.

Применение лазеров в эндодонтии изучалось с начала 1970-х годов. Широкое применение в стоматологии лазерные технологии получили с 1990 года. Первая часть данной статьи описывает эволюцию лазерных техник и технологий. Вторая ее часть демонстрирует современный уровень эффективности лазеров в очистке и обеззараживании системы корневых каналов и позволяет заглянуть в будущее, представляя последние исследования по новым методам использования энергии лазера в стоматологии.

Лазеры в эндодонтии

Лазерные технологии применяются в эндодонтии с целью улучшения результатов традиционного лечения, что достигается за счет световой энергии, которая способствует удалению детрита и смазанного слоя из корневых каналов, а также очищению и обеззараживанию эндодонтической системы.

Лабораторные исследования показали значительную эффективность использования лазерного излучения для уменьшения бактериальной обсемененности корневых каналов. Дальнейшие исследования показали эффективность применения лазеров в сочетании с традиционными ирригантами, такими как, 17% ЭДТА, 10% лимонная кислота и 5,25% гипохлорит натрия. Хелатирующие вещества облегчают проникновение лазерного луча в ткани. В твердые ткани зуба лазерный луч проникает на глубину до 1 мм и обеззараживает лучше, чем химические вещества.

Так же есть исследования, демонстрирующие способность волн различной длины к активации ирригационных растворов в канале. Методика активации ирригантов лазером показала статистически более высокую эффективность в удалении детрита и смазанного слоя из корневых каналов по сравнению с традиционными методами и ультразвуковой обработкой.

Недавние исследования, проведенные совместно с DiVito показали, что использование эрбиевого лазера в субабляционном режиме в сочетании с ирригацией ЭДТА, приводит к эффективному удалению детрита и смазанного слоя без термического повреждения органических дентинных структур.

Электромагнитный спектр света и классификация лазеров.

Лазеры классифицируются в зависимости от излучаемого спектра света. Они могут работать с волнами видимого и невидимого спектра, короткого, среднего и длинного инфракрасного диапазона. В соответствии с законами оптической физики, функции различных лазеров в клинической практике отличаются.

Первыми для внутрикорневого обеззараживания были использованы лазеры короткого инфракрасного диапазона (от 803нм до 1340 нм). В частности, представленный в начале 1990-х годов, Nd: YAG лазер (1064 нм), который доставляет лазерную энергию в канал через оптическую фибру.

Недавно был исследован и введен в лазерную стоматологию зеленый лазерный луч видимого спектра света (KTP , неодимовый дубликат 532 нм). Доставка этого луча возможна через гибкую оптическую фибру 200μ, что позволяет использовать его в эндодонтии для обеззараживания канала. Опыт такого использования уже продемонстрировал положительные результаты.

Лазеры среднего инфракрасного диапазона - линейка лазеров Erbium (2780 нм и 2940 нм), также известные с начала 1990-х, только в последнее десятилетие стали выпускаться с гибкими, тонкими наконечниками, предназначенными для эндодонтического лечения.

CO2 лазеры длинного инфракрасного диапазона (10600 нм) были первыми, которые использовались для деконтаминации и препарирования дентина в эндодонтической хирургии. В настоящее время они используются только для пульпотомии и пульпарной коагуляции.

В данной статье речь идет о применении лазеров короткого инфракрасного диапазона — диодных лазерах (810, 940, 980 нм) и Nd: YAG лазерах (1064 нм), а также о лазерах среднего инфракрасного диапазона- Er: YAG лазерах (2940 нм).

Научные основы использования лазеров в эндодонтии

Информация об основных физических свойствах воздействия лазера на ткани имеет важное значение для понимания их возможностей в эндодонтическом лечении.

Взаимодействие лазера с тканью

Воздействие лазерного излучения на биологические структуры зависит от длины волны излучаемой лазером энергии, плотности энергии луча и временных характеристик энергии луча. Процессы, которые могут при этом происходить - отражение, поглощение, рассеивание и передача.

Отражение является свойством пучка лазерного света, падать на цель и отражаться на рядом расположенные объекты. Поэтому при работе с лазером, чтобы избежать случайного повреждения глаз, обязательно носить защитные очки.

Поглощение лазерного света тканью. Поглощенный лазерный свет трансформируется в тепловую энергию. На поглощение влияют длина волны, содержание воды, пигментация и тип ткани.

Рассеивание лазерного света тканью. Рассеянный лазерный свет излучается повторно в случайном направлении и, в конечном счете, поглощается в большом объеме с менее интенсивным тепловым эффектом. На рассеивание влияет длина волны.

Передача является свойством лазерного луча, проходить через ткани, не обладающие свойством поглощения и не оказывать при этом повреждающего действия.

Взаимодействие лазерного света и тканей происходит при оптической близости между ними. Это взаимодействие является специфическим и селективным, основанным на поглощении и диффузии. Чем меньше сближение, чем больше света будет отражено или пропущено.

Эффекты лазерного излучения

Взаимодействие лазерного луча и ткани, посредством поглощения или диффузии, создает биологические эффекты, реализующие терапевтическое действие лазера, среди них выделяют:

Фото-тепловые эффекты;

Фотомеханические эффекты (в том числе фото-акустические эффекты);

Фотохимические эффекты.

Диодные лазеры (от 810nm до 1064 нм) и Nd: YAG лазеры (1064 нм) работают в коротком инфракрасном диапазоне электромагнитного спектра света. Они взаимодействуют в основном с мягкими тканями путем диффузии (рассеивания). Nd: YAG лазеры имеют большую глубину проникновения в мягкие ткани (до 5 мм), по сравнению с диодными лазерами (до 3 мм). Лучи Nd: YAG и диодных лазеров избирательно поглощается гемоглобином, оксигемоглобином и меланином, и оказывают фото-термическое воздействие на ткани. Поэтому применение этих лазеров в стоматологии ограничивается испарением и разрезом мягких тканей.

Nd: YAG и диодные лазеры могут использоваться для отбеливания зубов, путем термической активации реагента лазерным лучом.

В настоящее время в эндодонтии эти лазеры являются лучшими системами для обеззараживания системы корневых каналов, благодаря своей способности проникать в дентинные канальцы (до 750μ с 810нм диодный лазер, до 1 мм Nd:YAG лазер). Оптическая близость их длин волн к бактериям, приводит к разрушению последних за счет фото-тепловых эффекта.

Эрбиевые лазеры (2780 нм и 2940 нм) работают в среднем инфракрасным диапазоне и их луч главным образом поверхностно поглощается в диапазоне от 100 и 300μ для мягких тканей и до 400μ для дентина.

Вода – один из наиболее распространенных натуральных хромофоров, что делает применение лазеров возможным и для твердых, и для мягких тканей. Эта возможность обеспечивается содержанием воды в слизистой оболочке, деснах, дентине и некротизированной ткани. Эрбиевые лазеры влияют на эти ткани термически, создавая эффект испарения. В результате взрыва молекул воды генерируется фотомеханический эффект, который способствует абляции и очистке тканей.

Параметры, влияющие на выбросы энергии лазерного излучения

Различные устройства излучают лазерную энергию по-разному.

В диодных лазерах энергия подается непрерывной волной (CW режим). Но для лучшего контроля теплового излучения возможно механическое прерывание непрерывного потока излучения энергии (такое прерывное излучение называют «селектированное» или «нарезанное» или менее корректно «импульсное»). Длительность импульса и интервалы исчисляются в миллисекундах или микросекундах (время включения/выключения).

Nd: YAG лазеры и лазеры эрбиевой группы излучают лазерную энергию в импульсном режиме (также называемом режиме свободной генерации импульсов). Каждый импульс имеет время своего начала, увеличения и время окончания, в соответствии с прогрессией Гаусса. Между импульсами ткань охлаждается (тепловая релаксация), что позволяет лучше контролировать тепловые эффекты. Эрбиевые лазеры работают с интегрированным распылением воды, которая выполняет две функции: очистки и охлаждения.

В импульсном режиме серия импульсов излучается с различной скоростью (иногда неккоректно называемой частотой) их повторения, называемой скорость по Герцу (обычно от 2 до 50 импульсов в секунду). Более высокая скорость повторения импульсов действует аналогично непрерывному режиму работы, а более низкая скорость повторения импульсов предоставляет более длительное время для тепловой релаксации. Скорость повторения импульсов влияет на среднюю мощность излучения.

Другим важным параметром, влияющим на выброс энергии лазерного излучения, является «форма» импульса, которая описывает эффективность и дисперсию абляционной энергии в виде тепловой энергии. Длительность импульса, от микросекунд до миллисекунд, отвечает за основные тепловые эффекты. Более короткие импульсы от нескольких микросекунд (<100) до наносекунд, ответственны за фотомеханические эффекты. Длительность влияет на пиковую мощность каждого отдельного импульса.

Доступные на современном рынке стоматологические лазеры, являются автономными импульсными лазерами. Это Nd: YAG лазеры с импульсами от 100 до 200 мкс и эрбиевые лазеры с импульсами от 50 до 1000 мкс. А также диодные лазеры, излучающие энергию в непрерывном режиме, который может быть механически прерван, чтобы добиться излучения энергии в импульсном режиме с продолжительностью импульса от миллисекунд или микросекунд, в зависимости от модели лазера.

Воздействие лазерного излучения на микроорганизмы и дентин

В эндодонтическом лечении используются фототермические и фотомеханические свойства лазеров, основанные на взаимодействии различных длин волн и различных тканей, среди которых дентин, смазанный слой, опилки, остаточная пульпа и бактерии во всех их формах совокупности.

Волны всех длин разрушают мембраны клеток благодаря фототермическому эффекту. Из-за особенностей структурных характеристик клеточных мембран, грамотрицательные бактерии разрушаются легче и при меньших затратах энергии, чем грамоположительные.

Лазерные лучи короткого инфракрасного диапазона не поглощаются твердыми дентинными тканями и не имеют абляционного воздействия на поверхности дентина. Термальный эффект излучения проникает в дентинные стенки на глубину до 1 мм, оказывая обеззараживающее воздействие на глубокие слои дентина.

Лазерные лучи среднего инфракрасного диапазона хорошо поглощаются дентинными стенками, благодаря наличию в них молекул и, следовательно, имеют поверхностный абляционный и обеззараживающий эффект на поверхность корневого канала.

Термальный эффект лазеров, обладающий бактерицидным действием, необходимо контролировать, чтобы избежать повреждения дентинных стенок. Лазерное излучение при использовании правильных параметров испаряет смазанный слой и органические структуры дентина (коллагеновые волокна). Только эрбиевые лазеры имеют поверхностное абляционное действие на дентин, что является важным для насыщенного водой пространства внутри каналов. При применении неправильных параметров или режимов использования, возможно термическое повреждение с обширными областями плавления, перекристаллизацией минеральной матрицы (пузырь), и поверхностными микротрещинами одновременно с внутри и внекорневой карбонизацией.

При ультра-короткой длительности импульса (менее 150 мксек), эрбиевый лазер достигает пиковой мощности используя минимум энергии (менее 50mJ). Использование малой энергии сводит к минимуму излишнее абляционное и тепловое воздействие на дентинные стенки, а пиковые мощности приводят к активации молекул воды (целевого хромофора) и обеспечивают фотомеханическое и фотоакустическое (ударные волны) воздействие на дентинные стенки, за счет ирригантов, введённых в корневой канал. Эти свойства лазера являются чрезвычайно эффективными в очистке смазанного слоя, в устранении бактериальной биопленки, в дезинфекции канала, и будут рассмотрены в Части II.

Лазерные технологии применяются в эндодонтии с целью улучшения результатов традиционного лечения. Это достигается за счет световой энергии, которая способствует удалению детрита и смазанного слоя из корневых каналов, а также очищению и обеззараживанию системы каналов.

Использование лазерного излучения для уменьшения бактериальной обсемененности корневых каналов показало значительную эффективность, которая была подтверждена лабораторными исследованиями. Дальнейшие исследования показали эффективность применения лазеров в сочетании с традиционными ирригантами, такими как 17%-ная ЭДТА, 10%-ная лимонная кислота и 5,25%-ный гипохлорит натрия. Хелатирующие вещества облегчают проникновение лазерного луча в ткани. В твердые ткани зуба лазерный луч проникает на глубину до 1 мм и обеззараживает лучше, чем химические вещества.

Также есть исследования, демонстрирующие способность определенных длин волн к активации ирригационных растворов в канале. Методика активации ирригантов лазером показала статистически более высокую эффективность при удалении детрита и смазанного слоя из корневых каналов по сравнению с традиционными методами и ультразвуковой обработкой.

Недавние исследования, проведенные совместно с DiVito, показали, что использование эрбиевого лазера в режиме субабляционной плотности энергии с использованием специальных насадок и в сочетании с ирригацией ЭДТА приводит к эффективному удалению детрита и смазанного слоя без термического повреждения органических дентинных структур.

Электромагнитный спектр света и классификация лазеров

Лазеры классифицируются в зависимости от излучаемого спектра света. Они могут работать с волнами видимого и невидимого спектра, короткого, среднего и длинного инфракрасного диапазона. В соответствии с законами оптической физики функции разных лазеров в клинической практике различаются (рис. 1).

Первыми для внутриканального обеззараживания были использованы лазеры короткого инфракрасного диапазона (от 803 нм до 1340 нм). В частности, это был представленный в начале 1990-х годов Nd: YAG лазер (1064 нм), который доставляет лазерную энергию в канал через оптическое волокно.

Недавно был исследован и введен в использование зеленый лазерный луч видимого спектра света (KTP, неодимовый дубликат 532 нм). Доставка этого луча через гибкое оптическое волокно размером 200 μ позволяет использовать его в эндодонтии для обеззараживания канала. Опыт такого использования уже показал положительные результаты.

Лазеры среднего инфракрасного диапазона - линейка лазеров Erbium (2780 нм и 2940 нм), которая известна с начала 1990-х, - только в последнее десятилетие стали выпускаться с гибкими, тонкими наконечниками, предназначенными для эндодонтического лечения. CO2-лазеры длинного инфракрасного диапазона (10600 нм) были первыми использованными для деконтаминации и препарирования дентина в эндодонтии. В настоящее время они используются только для пульпотомии и пульпарной коагуляции. В данной статье речь идет о лазерах короткого инфракрасного диапазона - диодных лазерах (810, 940, 980 нм) и Nd: YAG лазерах (1064 нм), а также о лазерах среднего инфракрасного диапазона - лазерах Er: YAG (2940 нм).

Научные основы использования лазеров в эндодонтии

Отражение лазерного света тканью. Отражение - свойство пучка лазерного света падать на цель и отражаться на рядом расположенные объекты.
Поглощение лазерного света тка­­нью. Поглощенный лазерный свет трансформируется в тепловую энергию. На поглощение влияют длина волны, содержание воды, пигментация и тип ткани.
Рассеивание лазерного света тка­­нью. Рассеянный лазерный свет излучается повторно в случайном направлении и в конечном счете поглощается в большом объеме с менее интенсивным тепловым эффектом. На рассеивание влияет длина волны.
Передача лазерного света тканью. Передача - это свойство лазерного луча проходить через ткани, не обладающие свойством поглощения, и не оказывать при этом повреждающего действия.

Эффекты лазерного излучения

Диодные лазеры (от 810 нм до 1064 нм) и лазеры Nd: YAG (1064 нм) работают в коротком инфракрасном диапазоне электромагнитного спектра света. Они взаимодействуют в основном с мягкими тканями путем диффузии (рассеивания). Nd: YAG лазеры имеют большую глубину проникновения в мягкие ткани (до 5 мм) по сравнению с диодными лазерами (до 3 мм). Лучи Nd: YAG и диодных лазеров избирательно поглощаются гемоглобином, оксигемоглобином и меланином и оказывают фототермическое воздействие на ткани. Поэтому применение этих лазеров в стоматологии ограничивается испарением и разрезом мягких тканей.

Nd: YAG и диодные лазеры могут использоваться для отбеливания зубов (рис. 2 а, б) путем термической активации реагента лазерным лучом.

В настоящее время применение лазеров в эндодонтии является одним из лучших методов обеззараживания системы корневых каналов благодаря способности лазерных волн проникать в дентинные канальцы (до 750 μ - 810 нм диодный лазер, до 1 мм - Nd: YAG) и воздействовать на бактерии, разрушая их с помощью фототепловых эффектов. Эрбиевые лазеры (2780 нм и 2940 нм) работают в среднем инфракрасном диапазоне, их луч поглощается, главным образом, поверхностно в диапазоне 100-300 μ для мягких тканей и до 400 μ для дентина.

Вода - один из наиболее распространенных натуральных хромофоров, что делает применение эрбиевых лазеров возможным для твердых и мягких тканей. Эрбиевые лазеры влияют на ткани термически, создавая эффект испарения. В результате взрыва молекул воды генерирует фотомеханический эффект, который способствует абляции и очистке тканей (рис. 3).

Параметры, влияющие на выбросы энергии лазерного излучения

В диодных лазерах энергия подается непрерывной волной (CW-режим). Но для лучшего контроля теплового излучения возможно механическое прерывание потока энергии. Длительность импульса и интервалы исчисляются в миллисекундах или микросекундах.

Nd: YAG лазеры и лазеры эрбиевой группы излучают лазерную энергию в импульсном режиме. Каждый импульс имеет время своего начала, увеличения и время окончания, в соответствии с прогрессией Гаусса. Между импульсами ткань охлаждается, что позволяет лучше контролировать тепловые эффекты (рис. 4).

В импульсном режиме серия импульсов излучается с различной скоростью их повторения, обычно от 2 до 50 импульсов в секунду. Более высокая скорость повторения импульсов действует аналогично непрерывному режиму работы, а более низкая скорость повторения импульсов предоставляет более длительное время для тепловой релаксации. Скорость повторения импульсов влияет на среднюю мощность излучения, в соответствии с формулой, приведенной в таблице № 1.

Таблица № 1. Параметры излучения лазерного света

Другим важным параметром, влияющим на выброс энергии лазерного излучения, является «форма» импульса, которая описывает эффективность и дисперсию абляционной энергии в виде тепловой энергии. Длительность импульса, от микросекунд до миллисекунд, отвечает за основные тепловые эффекты и влияет на пиковую мощность каждого отдельного импульса, согласно формуле, приведенной в таблице № 1.

Доступные на современном рынке стоматологические лазеры являются автономными импульсными лазерами. Это Nd: YAG лазеры с импульсами от 100 до 200 мкс и эрбиевые лазеры с импульсами от 50 до 1000 мкс, а также диодные лазеры, излучающие энергию в непрерывном режиме.

Воздействие лазерного излучения на микроорганизмы и дентин

В эндодонтическом лечении используются фототермические и фотомеханические свойства лазеров, возникающие при взаимодействия различных длин волн и различных параметров тканей, на которые осуществляется воздействие. Это дентин, смазанный слой, опилки, остаточная пульпа и бактерии во всех формах совокупности.

Волны всех длин разрушают клеточную стенку благодаря фототермическому эффекту. Из-за особенностей структуры клеточных стенок грамотрицательные бактерии разрушаются легче и при меньших затратах энергии, чем грамположительные.

Луч проникает в дентинные стенки на глубину до 1 мм, оказывая обеззараживающее воздействие на глубокие слои дентина.

Лазерные лучи среднего инфракрасного диапазона хорошо поглощаются дентинными стенками благодаря наличию в них молекул и, следовательно, оказывают поверхностный абляционный и обеззараживающий эффект на стенки корневого канала.

Лазерное излучение при использовании правильных параметров испаряет смазанный слой и органические структуры дентина (коллагеновые волокна). Только эрбиевые лазеры оказывают поверхностное абляционное действие на дентин, что играет ключевую роль для насыщенного водой пространства внутри каналов.

При ультракороткой длительности импульса (менее 150 мкс) эрбиевый лазер достигает пиковой мощности, используя минимум энергии (менее 50 мДж). Использование малой энергии сводит к минимуму излишнее абляционное и тепловое воздействие на дентинные стенки, а пиковые мощ­­ности приводят к активации мо­­­­ле­­­­кул воды (целевого хромофора) и обе­­­­­­­­­спе­чивают фотомеханическое и фотоакустическое (ударные волны) воздействие на дентинные стенки за счет ирригантов, введенных в корневой канал.

Лазеры в эндодонтии. Часть II

Проф. Джованни Оливи, Проф.Роландо Криппа, Проф. Джузеппе Яриа, Проф. Василиос Каитсас, Др. Энрико Ди Вито, Проф. Стефано Бенедиченти

Использование лазера в эндодонтии.

Подготовка полости доступа

При помощи эрбиевого лазера можно осуществлять подготовку полости для доступа в корневой канал, так как он способен препарировать эмаль и дентин. При этом для возможности работать на высокой мощности рекомендуется использовать короткий кварцевый наконечник (типсу) длиной от 4 до 6 мм и диаметром от 600 до 800мкм.

Благодаря тому, что лазерная энергия эрбиевой лазерной системы поглощается тканями богатыми водой (пульпой и кариозной тканью), лазер обеспечивает селективный, а значит и минимально инвазивный доступ в пульповую камеру, обеспечивая в то же время деконтаминацию полости для доступа и удаление из нее бактериального дебриса (загрязнения) и тканей пульпы. Вследствие чего доступ к устьям корневых каналов достигается уже после сведения к минимуму количества бактерий в полости зуба, что позволяет избежать транспозиции бактерий, токсинов и дебриса в апикальном направлении во время процедуры препарирования канала. Чен и соавторы показали, что в процессе препарирования полости для доступа в корневые каналы бактерии погибают на глубине от 300 до 400 мкм на поверхности, подвергающейся лазерному излучению. Кроме того, эрбиевые лазеры могут быть использованы для удаления дентиклей и поиска кальцифицированных каналов.

Препарирование и формирование корневых каналов

На сегодняшний день препарирование корневых каналов роторными никель-титановыми инструментами является золотым стандартом в эндодонтии. Несмотря на то, что эрбиевые лазеры (с длиной волны 2780 нм и 2940 нм) благодаря признанному абляционному эффекту способны препарировать твердые ткани, их эффективность в механической подготовке корневых каналов на данный момент ограничена и не соответствует эндодонтическим стандартам, достигнутым при помощи вращающихся никель-титановых инструментов. Тем не менее Er,Cr:YSGG-лазер (эрбий:хром:иттрий-скандий-галий-гранат (YSGG) лазер) и Er:YAG-лазер (эрбиевый лазер) получили одобрение FDA для очистки, формирования и расширения корневых каналов. Их эффективность в формировании и расширении корневых каналов была продемонстрирована в нескольких исследованиях.

Седзи и др. использовали Er:YAG-лазер с коническим наконечником (80% бокового излучения и 20% эмиссии из кончика насадки), для расширения и очищения канала (с параметрами лазерного импульса 10-40 мДж; 10 Гц) и получили более чистые дентинные поверхности по сравнению с традиционной роторной техникой препарирования. В исследовании эффективности препарирования канала при помощи Er:YAG-лазера Кеслер и др. использовали лазеры, оснащенные микрозондами с радиальным излучением на глубину 200 - 400 мкм и установили, что лазер способен расширить и сформировать корневой канал более быстро и эффективно по сравнению с традиционным методом. Наблюдения под электронным микроскопом демонстрируют равномерную очистку дентинной поверхности от апикальной до корональной части канала, отсутствие остатков пульпы и хорошо очищенные дентинные трубочки (канальцы).Чен представил клинические исследования препарирования канала с использованием Er,Cr:YSG-лазера (первого лазера, получившего патент FDA для всех эндодонтических процедур: расширение, очистка и деконтаминация канала), последовательно используя наконечники с диаметром 400, 320 и 200 мкм и технику "краун-даун" на мощности 1,5 Вт и частотой 20 Гц (с соотношением в водно-воздушном охлаждении - воздух / вода 35/25 %). Стабхольц и др. представил положительные результаты препарирования каналов полностью выполненного с использованием Er:YAG-лазера и эндодонтического бокового микрозонда. Али и др., Мацуока и др.; Джахан и др. использовали Er,Cr:YSGG-лазер для препарирования прямых и изогнутых каналов, но в их случаях результаты экспериментальной группы были хуже, чем у контрольной группы. Используя Er,Cr:YSGG-лазер с насадками диаметром от 200 до 320 мкм на мощности 2Вт и частотой 20 Гц при препарировании прямых и изогнутых каналов, они пришли к выводу, что лазерное излучение способно препарировать прямые и изогнутые каналы с углом менее 10°, в то время как препарирование более сильно изогнутых каналов приводит к побочным эффектам, таким как перфорации, ожоги и транспортация канала. Ямомото и др. исследовали режущую способность и морфологические эффекты излучения Er:YAG-лазера invitro (30мДж; 10 и 25 Гц, скорость извлечения волокна 1-2мм/сек) снова с положительными результатами. Минас и др. получили положительные результаты препарирования канала с помощью Er,Cr:YSGG-лазера на 1,5, 1,75 и 2,0 Вт и 20 Гц с водяным спреем.

Поверхности корневого канала после препарирования эрбиевым лазером хорошо очищены, не имеют смазанного слоя, но часто содержат выступы, неровности, места обугливания. Кроме того, существует риск перфорации или апикальной транспортации канала. В итоге формирование канала, выполненное эрбиевым лазером, по-прежнему является сложной и противоречивой процедурой, которая не имеет преимуществ и может быть выполнена только в широких и прямых каналах.

Деконтаминация эндодонтической системы

Научные исследования деконтаминации канала доказывают эффективность используемых в эндодонтии химических ирригантов (NaOCl) в сочетании с хелатирующими веществами (лимонная кислота и ЭДТА), используемыми для улучшения очистки дентинных канальцев. В одном из таких исследований Берутти и соавторы продемонстрировали силу лазерной деконтаминации c NaOCl на глубину стенки корня 130мкм.

Первоначально лазеры были введены в эндодонтическую практику для повышения эффективности обеззараживания системы корневых каналов. Все длины волн (любой лазерной системы) благодаря тепловому эффекту имеют высокую бактерицидную силу. Тепло различной мощности с различной интенсивностью проникает в дентинные стенки и генерирует важные структурные изменения в бактериальных клетках. Изначально повреждение происходит в клеточной стенке, вызывая изменение осмотического градиента, что приводит к набуханию и смерти клеток.

Обеззараживание корневого канала при помощи лазеров ближнего инфракрасного диапазона

Для обеззараживания канала при помощи лазеров ближнего инфракрасного диапазона каналы должны быть подготовлены в соответствии с традиционно рекомендуемыми стандартами (препарирование апикальной зоны до ISO 25/30), так как длина волны этих лазеров не поглощается твердыми тканями и поэтому не оказывает на них абляционный эффект. Деконтаминация излучением выполняется в конце традиционной эндодонтической подготовки канала в качестве финального этапа эндодонтического лечения перед обтурацией. Оптическое волокно диаметром 200 мкм помещается в канал, не доходя 1 мм до апекса, и выводится винтовыми движениями в корональном направлении (в течение 5 - 10 секунд). Сегодня для уменьшения нежелательных тепловых и морфологических эффектов целесообразно выполнять эту процедуру в канале, заполненном ирригационным раствором (предпочтительно ЭДТА, лимонной кислотой или NaOCl). Используя экспериментальную модель, Шуп и др. продемонстрировали, каким образом лазеры распространяют свою энергию и проникают в дентинную стенку. Они показали большую эффективность физического обеззараживания дентинных стенок по сравнению с традиционной химической ирригацией.

При использовании неодимового лазера (Nd:YAG) с длиной волны 1064 нм наблюдалось снижение бактериальной обсемененности канала на 85% при проникновении на 1 мм. При том, что использование диодного лазера с длиной волны 810нм показало снижение бактериальной обсемененности канала на 63 % при проникновении на 750мкм или менее. Эта заметная разница в проникновении связана с низким и вариативным сродством этих длин волн к твердым тканям. Емкость диффузии, которая не является однородной, позволяет свету, проникнуть, чтобы достичь и уничтожить бактерии посредством тепловых эффектов (Рис.5) . Многие другие микробиологические исследования подтвердили сильное бактерицидное действие диодных лазеров и Nd:YAG-лазеров, снижающих бактериальную обсемененность магистрального канала до 100%.

РИС. 5: Волокно лазеров ближнего инфракрасного диапазона, расположенное в корневом канале не доходя 1 мм до апекса и различное проникновение лазерного излучения Nd:YAG-лазера и диодного лазера 810нм (справа) в дентинную стенку.

Лабораторные исследования Бенедиченти др. показали, что использование диодного лазера (810нм) в сочетании с химическими хелатирующими ирригантами, такими как лимонная кислота и ЭДТА, привело к снижению бактериальной обсемененности эндодонтической системы E. faecalis на 99,9%.

Обеззараживание корневых каналов при помощи лазеров среднего инфракрасного диапазона

Для деконтаминации канала при помощи эрбиевого лазера, учитывая его низкую эффективность в препарировании и формировании канала, требуется подготовка канала традиционными методами (препарирование апикальной зоны до ISO 25/30). Деконтаминацию каналов лазером значительно упрощает использование разработанных для разных эрбиевых лазеров длинных, тонких насадок (200 и 320мкм). Эти насадки легко погружаются в корневой канал, не доходя 1 мм до апекса. Традиционная методика деконтаминации излучением заключается в выведении наконечника из корневого канала спиральными движениями в течение 5-10 секунд, три-четыре раза. При этом необходимо, чтобы канал был влажным. Излучение следует чередовать с ирригацией общепринятыми химическими ирригантами.

Эффективность трехмерного обеззараживания эндодонтической системы при помощи эрбиевого лазера на сегодняшний день несравнима с эффективностью обеззараживания при помощи лазеров ближнего инфракрасного диапазона. Тепловая энергия, создаваемая этими лазерами, на самом деле поглощается в основном на поверхности (высокое сродство к дентинным тканям, богатым водой), где и оказывает наибольшее бактерицидное действие на E. coli (грамотрицательные бактерии) и E. faecalis (грамположительные бактерии). На этой глубине при 1,5 Вт Мориц и др. получили почти полное очищение канала от указанных выше бактерий (99,64%). Однако эти системы не оказывают бактерицидное действие в глубине латеральных каналов, так как проникают только на 300 мкм в глубину стенки корня.

Дальнейшие исследования изучали способность Er,Cr:YSGG-лазера к деконтаминации традиционно подготовленных каналов. На малой мощности (0,5 Вт, 10 Гц, 50мДж, воздух / вода 20%) полное уничтожение бактерий не происходит. Лучшие результаты для Er,Cr:YSGG-лазера — это очищение на 77% от указанных бактерий при мощности 1 Вт и 96% - при мощности 1,5Вт.

Новая область исследований по изучению способности эрбиевого лазера воздействовать на бактериальные биопленки апикальной трети канала подтвердила способность Er:YAG-лазера удалять эндодонтическую биопленку многих видов бактерий (например, A. naeslundii, E. faecalis, P. acnes, F. nucleatum, P. gingivalis или P. nigrescens) со значительным сокращением бактериальных клеток и распадом биопленки. Исключением являются биопленки образующиеся L. casei.

Текущие исследования оценивают эффективность недавно разработанных лазеров с радиальным и коническими наконечниками для удаления не только смазанного слоя, но и бактериальной биопленки. Результаты являются весьма перспективными.

Эрбиевые лазеры с наконечниками, имеющими фронтальное излучение (излучение исходит из конца наконечника) имеют малое боковое проникновение в дентинную стенку. Радиальные наконечники были предложены в 2007 году для Er,Cr:YSGG-лазера. Гордон и др. и Шуп и др. изучили их морфологические и обеззараживающие эффекты (Рис. 6). В их первом исследовании использовался наконечник с радиальным излучением 200 мкм во влажных (воздух / вода (34 и 28%) и в сухих условиях при 10 и 20 мДж и 20 Гц (0,2 и 0,4 Вт соответственно). Время излучения варьировалось от пятнадцати секунд до двух минут. Максимальная бактерицидная мощность (ликвидация 99.71% бактерий) была достигнута при максимальной мощности (0,4 Вт) и более длительной экспозиции в сухом режиме. При минимальном времени излучения (пятнадцать секунд) с минимальной мощностью (0,2 Вт) и водой, получили ликвидацию 94,7 % бактерий. Во втором исследовании использовался наконечник диаметром 300 мкм при 1 и 1,5 Вт и 20 Гц. Излучение проводилось пять раз в течение пяти секунд с двадцатисекундным охлаждением после каждого излучения. Уровень полученной деконтаминации был значительно высок. Повышение температуры при мощности в 1Вт было на 2,7° C, при мощности в 1,5 Вт на 3,2 ° C. Исследователи из Вены применяли другие параметры (0,6 и 0,9 Вт) и продемонстрировали рост температуры на 1,3 и 1,6° С соответственно, оказывающий высокое бактерицидное действие на E.coli и E. faecalis.

РИС. 6: Радиальный наконечник для Er,Cr:YSGG-лазера.

Наряду с преимуществами теплового эффекта в уничтожении бактериальных клеток имеет место повышение температуры, которое приводит к негативным изменениям на уровне дентина и пародонта. Поэтому крайне важно определить оптимальные параметры лазерного воздействия, а также исследовать новые методы для сведения к минимуму нежелательных тепловых эффектов, оказываемых лазерами на твердые и мягкие ткани.

Морфологические воздействия на дентин

Как показывают многочисленные исследования, излучение инфракрасных лазеров ближнего и среднего диапазонов при обеззараживании и очистке корневого канала в сухих условиях оказывает на стенки корня зуба побочные эффекты (Рис. 7 и 8).

РИС. 7: Нежелательные тепловые эффекты, возникающие при движении волокна Nd:YAG-лазера в корневом канале при работе в сухих условиях, контакт волокна с дентинной стенкой, может привести к ожогам.


РИС. 8: Нежелательные тепловые эффекты, возникающие при движении наконечника Er ,Cr:YSGG, используемого в традиционной технике, при контакте наконечника с сухой дентинной стенкой возникают ожоги, ступеньки и транспортации каналов.

Использование инфракрасного лазера ближнего диапазона вызывает характерные морфологические изменения в дентинной стенке: пузырьки рекристаллизации и трещины, не полное удаление смазанного слоя, дентинные канальцы закрытые расплавленными неорганическими дентинными структурами (Рис. 9-12) . Вода, присутствующая в ирригационных растворах, ограничивает повреждающее тепловое воздействие лазерного луча на дентинные стенки. При лазерной дезинфекции или хелатировании корневого канала вода термически активируется лазерами ближнего инфракрасного диапазона или испаряется при работе лазерами среднего инфракрасного диапазона (как целевой хромофор). Облучение корневых каналов лазерами ближнего инфракрасного диапазона (диодными (2,5 Вт, 15 Гц) и Nd:YAG (1,5 Вт, 100mJ, 15 Гц) сразу после использования ирригационного раствора позволяет получить лучшие характеристики дентина по сравнению с полученными только после ирригации.


РИС. 9-10: Изображение под электронным микроскопом (SEM) облучаемого Nd:YAG-лазером дентина (в сухих условиях при 1,5 Вт и 15 Гц). Обратите внимание на обширные районы плавления дентина и пузырьки.


РИС. 11-12: Изображение под электронным микроскопом (SEM) облучаемого диодным лазером (810nm) дентина (в сухих условиях при 1,5 Вт и 15 Гц). Видны признаки тепловых воздействий, отслойки и смазанный слой.

При излучении в присутствии NaOCl или хлоргексидина смазанный слой все же удаляется частично, и дентинные канальцы остаются закрытыми расплавленными неорганическими дентинными структурами, но при этом площадь плавления меньше (по сравнению с карбонизацией, видимой при излучении в сухих условиях). Наилучшие результаты были получены при излучении с орошением ЭДТА: поверхности, очищенные от смазанного слоя, с открытыми дентинными канальцами и меньшими проявлениями тепловых повреждений.

В заключение своих исследований по использованию эрбиевого лазера для дезинфекции и хелатирования корневых каналов Ямадзаки и др. и Кимура и др. подтвердили, что при использовании эрбиевых лазеров в корневых каналах в сухих условиях появляются нежелательные побочные морфологические эффекты. Для того чтобы предотвратить их образование, необходимо применять лазер в присутствии воды. При использовании эрбиевых лазеров без воды в результате используемой мощности появляются признаки абляции и термического повреждения. Также высока вероятность получения ступенек, трещин, зон поверхностного плавления и испарения смазанного слоя.

При работе эрбиевым лазером в корневых каналах с водой термические повреждения уменьшаются, и дентинные канальцы открываются в верхней межтубулярной части с более кальцифицированными и менее подверженными абляции областями. Однако межтубулярные области дентина, в которых больше воды, сильнее подвержены абляции. Смазанный слой в них испаряется излучением эрбиевых лазеров и в основном отсутствует. Шуп и др., исследуя изменения температуры на поверхности корней invitro, обнаружил, что применение стандартизированных значений энергии (100мДж, 15 Гц, 1.5Вт) приводит к повышению температуры на уровне поверхности периодонта лишь на 3,5 °С. Мориц предложил эти параметры в качестве международного стандарта использования эрбиевого лазера в эндодонтии как эффективного средства очистки и обеззараживания корневого канала (Рис. 13-16).

РИС. 13-14: Изображение под электронным микроскопом (SEM) облучаемого Er,Cr:YSGG-лазером дентина (при 1,0 Вт, 20 Гц, волокно не доходит 1 мм до верхушки), канал орошали физиологическим раствором. Показаны признаки смазанного слоя и термического повреждения.


РИС. 15 - 16: Изображение под электронным микроскопом (SEM) облучаемого Er,Cr:YSGG-лазером (при 1.5Вт и 20 Гц) дентина с водно-воздушным охлаждением (45/35%). Показаны открытые дентинные канальцы и отсутствие смазанного слоя.

При использовании лазеров для дезактивации эндодонтической системы, желательно использовать ирригационные растворы (NaOCl и ЭДТА). Эти растворы также следует применять в терминальной фазе лазерного эндодонтического лечения для получения оптимального состояния дентина и уменьшения повреждающих тепловых эффектов.

Изучение лазерной активации ирригационных растворов представляет собой новую область исследований по применению лазеров в эндодонтии. Для активации ирригационных растворов были предложены различные техники, среди которых лазерная активация ирригации (ЛАИ) и фотонинициированный фотоакустический поток (ФИФП).

Фототепловые и фотомеханические эффекты для удаления смазанного слоя

Джордж и др. опубликовали первое исследование, в котором изучалась способность лазеров активировать ирригационные растворы внутри корневого канала с целью повышения их эффективности. В этом исследовании были использованы две лазерные системы: Er:YAG и Er,Cr:YSGG. Для увеличения боковой энергии диффузии, у наконечников этих лазеров (диаметр 400 мкм, как у плоских, так и у конических наконечников) было химически удалено внешнее покрытие.

В исследовании облучали заранее сформированные корневые каналы с плотным слоем выращенного в лабораторных условиях смазанного слоя. Исследование показало, что лазерная активация ирригантов (EDTA , в частности) привела к лучшим результатам по очистке и удалению смазанного слоя с поверхности дентина (по сравнению с каналами, в которых проводилась только ирригация). В более позднем исследовании авторы сообщили, что лазерная активация ирригации при мощностях 1 и 0,75 Вт приводит к увеличению температуры только на 2,5° С без повреждения структур пародонта. Бланкен и Де Моор также изучали эффекты лазерной активации ирригантов, сравнивая ее с традиционной ирригацией (ТИ) и пассивной ультразвуковой ирригацией (ПУИ). В их исследовании были использованы 2,5% раствор NaOCl и Er,Cr:YSGG-лазер. Лазерная активация раствора проводилась при помощи эндодонтического наконечника (диаметр 200 мкм, плоский кончик) четыре раза в течение пяти секунд при 75 мДж, 20 Гц, 1,5 Вт. Наконечник погружали в корневой канал, не доходя 5 мм до апекса. В результате удаление смазанного слоя было значительно эффективнее по сравнению с двумя другими методиками. Фотомикрографическое изучение эксперимента показывает, что лазер генерирует движение жидкостей с высокой скоростью через кавитационный эффект. Расширение и последующий взрыв ирригантов (термический эффект) генерирует вторичный эффект кавитации на внутриканальную жидкость. Еще одно преимущество данного метода заключается в отсутствии необходимости перемещать волокно (фибру) вверх и вниз в канале. Волокно необходимо просто ровно держать в средней трети канала на расстоянии 5 мм от апекса, что значительно упрощает лазерную технику, так как не надо продвигаться до апекса, преодолевая искривления корня (Рис. 17а).

РИС. 17: Волокно и наконечник лазеров ближнего и среднего инфракрасного диапазона, расположенные в корневом канале не доходя 1 мм до апекса. В соответствии с методикой ЛАИ наконечник должен быть локализован в средней трети канала, не доходя 5 мм до апекса (справа).

Де Моор и др., сравнивая технику лазерной активации ирригации (ЛАИ) с пассивной ультразвуковой ирригацией (ПУИ), пришли к выводу, что лазерный метод с использованием меньшего числа ирригаций (четыре раза в течение пяти секунд) дает результаты, сопоставимые с ультразвуковой техникой, используемой более длительное время орошения (три раза в течение 20 секунд). Де Гроот и др. также подтвердили эффективность метода ЛАИ и улучшенные результаты, полученные по сравнению с ПУИ. Авторы подчеркнули концепцию потока, обусловленную распадом молекул воды в используемых ирригационных растворах.

Хмуд и др. исследовали возможность использования лазеров ближнего инфракрасного диапазона (940 и 980 нм) с волокном 200 мкм для активации ирригационных растворов при 4Вт и 10 Гц и 2,5 Вт и 25 Гц соответственно. Учитывая отсутствие сродства этих волн к воде, были необходимы большие мощности, которые через тепловой эффект и кавитацию, произведут движения жидкости в корневом канале, что в итоге приведет к увеличению способности ирригантов удалять дебрис и смазанный слой. В более позднем исследовании авторы подтвердили безопасность использования этих больших мощностей, которые вызвали повышение температуры на 30° С в ирригационном растворе внутри канала, но только на 4 ° C на внешней поверхности корня. Исследователи пришли к выводу, что ирригация, активируемая лазерами ближнего инфракрасного диапазона, весьма эффективна при минимальных термических воздействиях на дентин и цемент корня. В недавнем исследовании Маседо и др. обозначают главную роль лазерной активации как сильного модулятора скорости реакции NaOCl. Во время интервала между ирригациями (три минуты), активность хлора значительно увеличилась после ЛАИ по сравнению с ПУИ или ТИ.

Фотонинициированный фотоакустический поток

ФИФП техника предполагает взаимодействие эрбиевого лазера с ирригационными растворами (ЭДТА или дистиллированной водой). Методика отличается от ЛАИ. При ФИФП используются исключительно фотоакустические и фотомеханические явления, образующиеся в результате использования энергии субабляции 20мДж на 15 Гц с импульсами исключительно 50 мкс. При средней мощности только 0,3 Вт каждый импульс взаимодействует с молекулами воды при пиковой мощности 400 Вт, создавая расширения и последовательные "ударные волны", ведущие к образованию мощного потока жидкости внутри канала, не создавая нежелательных тепловых эффектов, наблюдаемых при других методах.

Исследование апикальной трети корня при помощи термических паров показали, что при выполнении техники ФИФП температура поднимается только на 1,2 °C после 20 секунд и на 1,5 °С после 40 секунд непрерывного излучения. Еще одним значительным преимуществом этой методики является то, что наконечник следует размещать в пульповой камере, на входе в корневой канал. При этом нет необходимости его введения в канал, не доходя пять или один миллиметр до апекса, что бывает достаточно проблемно, но требуется при ЛАИ и ТИ. Для методики ФИФП используются недавно разработанные насадки (12 мм в длину, 300 и 400 мкм в диаметре, с "радиальными и зачищенными" концами). Трёхмиллиметровые концы этих насадок не имеют покрытия, чтобы обеспечить большее по сравнению с фронтальной насадкой боковое излучение энергии. Такой режим излучения энергии позволяет использовать лазерную энергию эффективнее. В уровни субабляции подаются импульсы с очень высокой пиковой мощностью (50 мкс, 400Вт), в результате чего в ирригационных растворах возникают мощные «ударные волны», которые и оказывают требуемые механические эффекты на дентинные стенки (Рис.18-20).


РИС. 18-20: Радиальный кварцевый наконечник для проведения ФИФП 400 мкм. Трёхмиллиметровые концы этих насадок не имеют покрытия, чтобы позволить большее по сравнению с фронтальной насадкой боковое излучение энергии.

Исследования показывают, что удаление смазанного слоя эффективнее в контрольных группах только с ЭДТА или дистиллированной водой. Образцы, обработанные лазером и ЭДТА в течение 20 и 40 секунд, показывают полное удаление смазанного слоя с открытыми дентинными канальцами (1 балл в соответствии с Хюльсман) и отсутствие нежелательных тепловых явлений в дентинных стенках, которые характерны при лечении традиционными лазерными методами. При рассмотрении на большом увеличении структура коллагена остается неизменной, что свидетельствует в пользу гипотезы о минимально инвазивном эндодонтическом лечении (Рис. 21-23).



РИС. 21-23: Изображение под электронным микроскопом (SEM) облучаемого радиальным наконечником дентина при 20 и 50мДж и 10 Гц в течение 20 и 40 секунд соответственно с ирригацией ЭДТА. Показан очищенный от загрязнений и смазанного слоя дентин.

Последствия и результаты описанных техник деконтаминации корневых каналов и удаленияиз них бактериальной биопленки продолжают изучаться. Полученные на сегодняшний день результаты исследований очень многообещающие (Рис. 24-26).

РИС. 24: Изображение под электронным микроскопом (SEM) дентина, покрытого бактериальной биопленкой Е. faecalis до лазерного облучения.



РИС. 25 - 26: Изображение под электронным микроскопом (SEM) дентина, покрытого бактериальной биопленкой Е. faecalis после облучения с Er:YAG-лазером (20 мДжи 15 Гц, ФИФП насадка) с ирригацией ЭДТА. Показано разрушение и отслоениебактериальной биопленки и ее полное испарение из основного корневого канала и из боковых канальцев.

Обсуждение и выводы

Лазерные технологии, используемые в эндодонтии за последние 20 лет, претерпели значительное развитие. Улучшена технология разработки эндодонтического волокна и наконечников, калибр и гибкость которых позволяют ввести их в корневой канал, не доходя 1 мм до апекса. Исследования последних лет были направлены на разработку технологий (импульсы уменьшенной длины, "радиальные и зачищенные" наконечники) и методов (ЛАИ и ФИФП), которые способны упростить использование лазера в эндодонтии и свести к минимуму нежелательные тепловые эффекты на дентинные стенки, за счет использования меньшей энергии в присутствии химических ирригантов. Раствор ЭДТА оказался лучшим решением для техники ЛАИ, которая активирует жидкость и увеличивает ее хелатирующую активность и удаление смазанного слоя. Лазерная активация NaOCl увеличивает его дезактивационную активность. И, наконец, способ ФИФП уменьшает повреждающее тепловое воздействие на ткани зуба и оказывает сильное очищающее и бактерицидное действие благодаря инициированию потоков жидкостей фотонной энергией лазера. Для подтверждения методов ЛАИ и ФИФП в качестве инновационных технологий современной эндодонтии необходимы дальнейшие исследования.

«Лазеры и их применение» - Лазерная сварка. Меры безопасности. Лазерное оружие. Лазерное шоу. Лазерная указка. Применение лазеров в стоматологии. Классификация лазеров. Свойства лазерного света. Лазеры в измерениях. Применение лазеров в медицине. Что такое лазер. Лазеры и их применение. Применение лазеров. Лазерный принтер. Лазерные системы в деревообработке.

«Работа лазера» - День весеннего равноденствия. Применение лазеров. Поглощение света атомом. Изобретатели лазера. Рубиновый лазер. Трехуровневая схема оптической накачки. Что изображено на рисунках. Лазеры. Принцип действия. Постулаты Бора. Модель. Типы лазеров. Усиление света. «Профессии» лазера. Устройство и принцип действия лазера.

«Полупроводниковые лазеры» - Полупроводниковые лазерные материалы: Наибольшее развитие получили П. л. первых двух типов. Историческая справка: Люминесценция в полупроводниках (а) Инверсия населённостей в полупроводниках (б). Полупроводниковый лазер -. Важные особенности п.л. Полупроводниковые лазеры. П.л. с электронной накачкой.

«Типы лазеров» - Полупроводниковые лазеры. Лазеры на парах металлов. Лазер обычно состоит из трёх основных элементов: Переход между уровнями E3 и E2 безызлучательный. Твердотельные лазеры. Первый лазер на рубине, созданный в ФИАНе М.Д.Галаниным, А.М.Леонтовичем, З.А.Чижиковой, 1960 год. Указаны «времена жизни» уровней E2 и E3.

«Действие лазера» - Импульсный. Газовый. «Профессии» лазера. 1916 – 1960 г - «Золотой век» создания чудесного луча. А.М.Прохоров. Цели урока. Лазер в медицине. Ч. Таунс. Первый лазер на рубине. Индуцированное (вынужденное) излучение. Необходимые энергетические уровни имеются в кристаллах рубина. Определить длину волны излучения лабораторного лазера.

«Принцип работы лазера» - Первый лазер на рубине. Схема рубинового лазера. Временные зависимости. Пичковый режим работы лазера. Простейшая реализация п/п лазера на прямозонном полупроводнике. Схемы накачки активной среды. Различные виды твердотельных лазеров. Устройство и принцип работы гелий-неонового лазера. Принцип действия импульсного лазерного дальномера.

Всего в теме 14 презентаций

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!