Образовательный портал - Varnavinschool

Приложение криволинейного уравнения 1 и 2 рода. Криволинейные интегралы

На случай, когда областью интегрирования является отрезок некоторой кривой, лежащий в плоскости. Общая запись криволинейного интеграла следующая:

где f (x , y ) - функция двух переменных, а L - кривая, по отрезку AB которой происходит интегрирование. Если подынтегральная функция равна единице, то криволинейный интеграл равен длине дуги AB .

Как всегда в интегральном исчислении, криволинейный интеграл понимается как предел интегральных сумм каких-то очень маленьких частей чего-то очень большого. Что же суммируется в случае криволинейных интегралов?

Пусть на плоскости расположен отрезок AB некоторой кривой L , а функция двух переменных f (x , y ) определена в точках кривой L . Пусть мы выполняем с этим отрезком кривой следующий алгоритм.

  1. Разделить кривую AB на части точками (рисунки ниже).
  2. В каждой части свободно выбрать точку M .
  3. Найти значение функции в выбранных точках.
  4. Значения функции умножить на
    • длины частей в случае криволинейного интеграла первого рода ;
    • проекции частей на ось координат в случае криволинейного интеграла второго рода .
  5. Найти сумму всех произведений.
  6. Найти предел найденной интегральной суммы при условии, что длина самой длинной части кривой стремится к нулю.

Если упомянутый предел существует, то этот предел интегральной суммы и называется криволинейным интегралом от функции f (x , y ) по кривой AB .


первого рода

Случай криволинейного интеграла
второго рода

Введём следующие ообозначения.

M i (ζ i ; η i ) - выбранная на каждом участке точка с координатами.

f i (ζ i ; η i ) - значение функции f (x , y ) в выбранной точке.

Δs i - длина части отрезка кривой (в случае криволинейного интеграла первого рода).

Δx i - проекция части отрезка кривой на ось Ox (в случае криволинейного интеграла второго рода).

d = maxΔs i - длина самой длинной части отрезка кривой.

Криволинейные интегралы первого рода

Исходя из вышеизложенного о пределе интегральных сумм, криволинейный интеграл первого рода записывается так:

.

Криволинейный интеграл первого рода обладает всеми свойствами, которыми обладает определённый интеграл . Однако есть одно важное различие. У определённого интеграла при перемене местами пределов интегрирования знак меняется на противоположный:

В случае же криволинейного интеграла первого рода не имеет значения, какую из точек кривой AB (A или B ) считать началом отрезка, а какую концом, то есть

.

Криволинейные интегралы второго рода

Исходя из изложенного о пределе интегральных сумм, криволинейный интеграл второго рода записывается так:

.

В случае криволинейного интеграла второго рода при перемене местами начала и конца отрезка кривой знак интеграла меняется:

.

При составлении интегральной суммы криволинейного интеграла второго рода значения функции f i (ζ i ; η i ) можно умножать также на проекции частей отрезка кривой на ось Oy . Тогда получим интеграл

.

На практике обычно используется объединение криволинейных интегралов второго рода, то есть две функции f = P (x , y ) и f = Q (x , y ) и интегралы

,

а сумма этих интегралов

называется общим криволинейным интегралом второго рода .

Вычисление криволинейных интегралов первого рода

Вычисление криволинейных интегралов первого рода сводится к вычислению определённых интегралов. Рассмотрим два случая.

Пусть на плоскости задана кривая y = y (x ) и отрезку кривой AB соответствует изменение переменной x от a до b . Тогда в точках кривой подынтегральная функция f (x , y ) = f (x , y (x )) ("игрек" должен быть выражен через "икс"), а дифференциал дуги и криволинейный интеграл можно вычислить по формуле

.

Если интеграл проще интегрировать по y , то из уравнения кривой нужно выразить x = x (y ) ("икс" через "игрек"), где и интеграл вычисляем по формуле

.

Пример 1.

где AB - отрезок прямой между точками A (1; −1) и B (2; 1) .

Решение. Составим уравнение прямой AB , используя формулу (уравнение прямой, проходящей через две данные точки A (x 1 ; y 1 ) и B (x 2 ; y 2 ) ):

Из уравнения прямой выразим y через x :

Тогда и теперь можем вычислять интеграл, так как у нас остались одни "иксы":

Пусть в пространстве задана кривая

Тогда в точках кривой функцию нужно выразить через параметр t () а дифференциал дуги , поэтому криволинейный интеграл можно вычислить по формуле

Аналогично, если на плоскости задана кривая

,

то криволинейный интеграл вычисляется по формуле

.

Пример 2. Вычислить криволинейный интеграл

где L - часть линии окружности

находящаяся в первом октанте.

Решение. Данная кривая - четверть линии окружности, расположенная в плоскости z = 3 . Она соответствует значениям параметра . Так как

то дифференциал дуги

Подынтегральную функцию выразим через параметр t :

Теперь, когда у нас всё выражено через параметр t , можем свести вычисление данного криволинейного интеграла к определённому интегралу:

Вычисление криволинейных интегралов второго рода

Так же, как и в случае криволинейных интегралов первого рода, вычисление интегралов второго рода сводится к вычислению определённых интегралов.

Кривая дана в декартовых прямоугольных координатах

Пусть дана кривая на плоскости уравнением функции "игрек", выраженной через "икс": y = y (x ) и дуге кривой AB соответствует изменение x от a до b . Тогда в подынтегральную функцию подставим выражение "игрека" через "икс" и определим дифференциал этого выражения "игрека" по "иксу": . Теперь, когда всё выражено через "икс", криволинейный интеграл второго рода вычисляется как определённый интеграл:

Аналогично вычисляется криволинейный интеграл второго рода, когда кривая дана уравнением функции "икс", выраженной через "игрек": x = x (y ) , . В этом случае формула для вычисления интеграла следующая:

Пример 3. Вычислить криволинейный интеграл

, если

а) L - отрезок прямой OA , где О (0; 0) , A (1; −1) ;

б) L - дуга параболы y = x ² от О (0; 0) до A (1; −1) .

а) Вычислим криволинейный интеграл по отрезку прямой (на рисунке - синяя). Напишем уравнение прямой и выразим "игрек" через "икс":

.

Получаем dy = dx . Решаем данный криволинейный интеграл:

б) если L - дуга параболы y = x ² , получим dy = 2xdx . Вычисляем интеграл:

В только что решённом примере получили в двух случаях один и тот же результат. И это не совпадение, а результат закономерности, так как данный интеграл удовлетворяет условиям следующей теоремы.

Теорема . Если функции P (x ,y ) , Q (x ,y ) и их частные производные , - непрерывные в области D функции и в точках этой области частные производные равны, то криволинейный интеграл не зависит от пути интегрирования по линии L , находящейся в области D .

Кривая дана в параметрической форме

Пусть в пространстве дана кривая

.

а в подынтегральные функции подставим

выражения этих функций через параметр t . Получаем формулу для вычисления криволинейного интеграла:

Пример 4. Вычислить криволинейный интеграл

,

если L - часть эллипса

отвечающая условию y ≥ 0 .

Решение. Данная кривая - часть эллипса, находящаяся в плоскости z = 2 . Она соответствует значению параметра .

можем представить криволинейный интеграл в виде определённого интеграла и вычислить его:

Если дан криволинейный интеграл и L - замкнутая линия, то такой интеграл называется интегралом по замкнутому контуру и его проще вычислить по формуле Грина .

Больше примеров вычисления криволинейных интегралов

Пример 5. Вычислить криволинейный интеграл

где L - отрезок прямой между точками её пересечения с осями координат.

Решение. Определим точки пересечения прямой с осями координат. Подставив в уравнение прямой y = 0 , получим , . Подставив x = 0 , получим , . Таким образом, точка пересечения с осью Ox - A (2; 0) , с осью Oy - B (0; −3) .

Из уравнения прямой выразим y :

.

, .

Теперь можем представить криволинейный интеграл в виде определённого интеграла и начать вычислять его:

В подынтегральном выражении выделяем множитель , выносим его за знак интеграла. В получившемся после этого подынтегральном выражении применяем подведение под знак дифференциала и окончательно получаем.

1 рода.

1.1.1. Определение криволинейного интеграла 1 рода

Пусть на плоскости Оxy задана кривая (L). Пусть для любой точки кривой (L) определена непрерывная функция f(x;y). Разобьем дугу АВ линии (L) точками А=P 0 , P 1 , P n = В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.27)

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму

Пусть , где .

λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L )на элементарные части, ни от выбора точек M i криволинейным интегралом 1 рода от функции f(x;y) (криволинейным интегралом по длине дуги) и обозначают:

Замечание . Аналогично вводиться определение криволинейного интеграла от функции f(x;y;z) по пространственной кривой (L).

Физический смысл криволинейного интеграла 1 рода:

Если (L)- плоская кривая с линейной плоскостью , то массу кривой находят по формуле:

1.1.2. Основные свойства криволинейного интеграла 1 рода:

3. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то .

4. Криволинейный интеграл 1 рода не зависит от направления интегрирования:

5. , где - длина кривой.

1.1.3. Вычисление криволинейного интеграла 1 рода.

Вычисление криволинейного интеграла сводят к вычислению определенного интеграла.

1. Пусть кривая (L) задана уравнением . Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Вычислить массу отрезка прямой от точки А(1;1) до точки В(2;4), если .

Решение

Уравнение прямой проходящей через две точки: .

Тогда уравнение прямой (АВ ): , .

Найдём производную .

Тогда . = .

2. Пусть кривая (L) задана параметрически : .

Тогда , то есть дифференциал дуги вычисляют по формуле .

Для пространственного случая задания кривой: .Тогда

То есть дифференциал дуги вычисляют по формуле .

Пример

Найти длину дуги кривой , .

Решение

Длину дуги найдём по формуле : .

Для этого найдём дифференциал дуги .

Найдём производные , , .Тогда и длина дуги: .

3. Пусть кривая (L) задана в полярной системе координат: . Тогда

То есть дифференциал дуги вычислют по формуле .

Пример

Вычислить массу дуги линии , 0≤ ≤ , если .

Решение

Массу дуги найдём по формуле:

Для этого найдёмдифференциал дуги .

Найдём производную .

1.2. Криволинейный интеграл 2 рода

1.2.1. Определение криволинейного интеграла 2 рода


Пусть на плоскости Оxy задана кривая (L) . Пусть на (L) задана непрерывная функция f (x;y). Разобьем дугу АВ линии (L) точками А = P 0 ,P 1 , P n = В в направлении от точки А к точке В на n произвольных дуг P i -1 P i с длинами (i = 1, 2, n ) (рис.28).

Выберем на каждой дуге P i -1 P i произвольную точку M i (x i ; y i) , вычислим значение функции f(x;y) в точке M i . Составим интегральную сумму , где - длина проекции дуги P i -1 P i на ось Оx . Если направление движения вдоль проекции совпадает с положительным направлением оси Оx , то проекцию дуг считают положительной , иначе - отрицательной .

Пусть , где .

Если существует предел интегральной суммы при λ→0 (n→∞ ), не зависящий ни от способа разбиения кривой (L) на элементарные части, ни от выбора точек M i в каждой элементарной части, то этот предел называют криволинейным интегралом 2 рода от функции f(x;y) (криволинейным интегралом по координате х ) и обозначают:

Замечание. Аналогично вводится криволинейный интеграл по координате у:

Замечание. Если (L) - замкнутая кривая, то интеграл по ней обозначают

Замечание. Если на (L ) задано сразу три функции и от этих функций существуют интегралы , , ,

то выражение: + + называют общим криволинейным интегралом 2 рода и записывают:

1.2.2. Основные свойства криволинейного интеграла 2 рода:

3. При изменении направления интегрирования криволинейный интеграл 2 рода изменяет свой знак .

4. Если путь интегрирования разбит на части такие что , и имеют единственную общую точку, то

5. Если кривая (L ) лежит в плоскости:

Перпендикулярной оси Ох , то =0 ;

Перпендикулярной оси Oy , то ;

Перпендикулярной оси Oz , то =0.

6. Криволинейный интеграл 2 рода по замкнутой кривой не зависит от выбора начальной точки (зависит только от направления обхода кривой).

1.2.3. Физический смысл криволинейного интеграла 2 рода.

Работа А силы при перемещении материальной точки единичной массы из точки М в точку N вдоль (MN ) равна:

1.2.4. Вычисление криволинейного интеграла 2 рода.

Вычисление криволинейного интеграла 2 рода сводят к вычислению определенного интеграла.

1. Пусть кривая (L ) задана уравнением .

Пример

Вычислить, где (L )- ломаная OAB : O(0;0), A(0;2), B(2;4).

Решение

Так как (рис.29), то

1)Уравнение (OA) : , ,

2) Уравнение прямой (AB ): .

2. Пусть кривая (L) задана параметрически: .

Замечание. В пространственном случае:

Пример

Вычислить

Где (АВ)- отрезок от А(0;0;1) до B(2;-2;3).

Решение

Найдём уравнение прямой (АВ ):

Перейдём к параметрической записи уравнения прямой (АВ) . Тогда .

Точке A(0;0;1) соответствует параметр t равный: следовательно, t=0.

Точке B(2;-2;3) соответствует параметр t , равный: следовательно, t=1.

При перемещении от А к В ,параметр t меняется от 0 до 1 .

1.3. Формула Грина . L ) в т. М(х;у;z) с осями Оx, Оy, Oz

Если дан криволинейный интеграл, а кривая, по которой происходит интегрирование - замкнутая (называется контуром), то такой интеграл называется интегралом по замкнутому контуру и обозначается следующим образом:

Область, ограниченную контуром L обозначим D . Если функции P (x , y ) , Q (x , y ) и их частные производные и - функции, непрерывные в области D , то для вычисления криволинейного интеграла можно воспользоваться формулой Грина:

Таким образом, вычисление криволинейного интеграла по замкнутому контуру сводится к вычислению двойного интеграла по области D .

Формула Грина остаётся справедливой для всякой замкнутой области, которую можно проведением дополнительных линий на конечное число простых замкнутых областей.

Пример 1. Вычислить криволинейный интеграл

,

если L - контур треугольника OAB , где О (0; 0) , A (1; 2) и B (1; 0) . Направление обхода контура - против часовой стрелки. Задачу решить двумя способами: а) вычислить криволинейные интегралы по каждой стороне треугольника и сложить результаты; б) по формуле Грина.

а) Вычислим криволинейные интегралы по каждой стороне треугольника. Сторона OB находится на оси Ox , поэтому её уравнением будет y = 0 . Поэтому dy = 0 и можем вычислить криволинейный интеграл по стороне OB :

Уравнением стороны BA будет x = 1 . Поэтому dx = 0 . Вычисляем криволинейный интеграл по стороне BA :

Уравнение стороны AO составим, пользуясь формулой уравнения прямой, проходящей через две точки:

.

Таким образом, dy = 2dx . Вычисляем криволинейный интеграл по стороне AO :

Данный криволинейный интеграл будет равен сумме интегралов по краям треугольника:

.

б) Применим формулу Грина. Так как , , то . У нас есть всё для того, чтобы вычислить данный интеграл по замкнутому контуру по формуле Грина:

Как видим, получили один и тот же результат, но по формуле Грина вычисление интеграла по замкнутому контуру происходит значительно быстрее.

Пример 2.

,

где L - контур OAB , OB - дуга параболы y = x ² , от точки О (0; 0) до точки A (1; 1) , AB и BO - отрезки прямых, B (0; 1) .

Решение. Так как функции , , а их частные производные , , D - область, ограниченная контуром L , у нас есть всё, чтобы воспользоваться формулой Грина и вычислить данный интеграл по замкнутому контуру:

Пример 3. Пользуясь формулой Грина, вычислить криволинейный интеграл

, если L - контур, который образуют линия y = 2 − |x | и ось Oy .

Решение. Линия y = 2 − |x | состоит из двух лучей: y = 2 − x , если x ≥ 0 и y = 2 + x , если x < 0 .

Имеем функции , и их частные производные и . Подставляем всё в формулу Грина и получаем результат.

Назначение . Онлайн калькулятор предназначен для нахождения работы силы F при перемещении вдоль дуги линии L .

Криволинейные и поверхностные интегралы второго рода

Рассмотрим многообразие σ . Пусть τ(x,y,z) - единичный вектор касательной к σ , если σ - кривая, а n(x,y,z) - единичный вектор нормали к σ , если σ - поверхность в R 3 . Введём векторы dl = τ · dl и dS = n · dS , где dl и dS - длина и площадь соответствующего участка кривой или поверхности. Будем считать, что dσ =dl , если σ - кривая, и dσ =dS , если σ - поверхность. Назовём dσ ориентированной мерой соответствующего участка кривой или поверхности.

Определение . Пусть заданы ориентированное непрерывное кусочно-гладкое многообразие σ и на σ – вектор-функция F(x,y,z)=P(x,y,z)i+Q(x,y,z)+R(x,y,z). Разобьем многообразие на части многообразиями меньшей размерности (кривую – точками, поверхность –кривыми), внутри каждого полученного элементарного многообразия выберем по точке M 0 (x 0 ,y 0 ,z 0), M 1 (x 1 ,y 1 ,z 1), ... ,M n (x n ,y n ,z n). Посчитаем значения F(x i ,y i ,z i), i=1,2,...,n вектор-функции в этих точках,умножим скалярно эти значения на ориентированную меру dσ i данного элементарного многообразия (ориентированные длину или площадь соответствующего участка многообразия) и просуммируем. Предел полученных сумм если онсуществует, не зависит от способа разбиения многообразия на части и выбора точек внутри каждого элементарного многообразия, при условии, что диаметр элементарного участка стремится к нулю, называется интегралом по многообразию (криволинейным интегралом, если σ -кривая и поверхностным, если σ - поверхность) второго рода, интеграломвдоль ориентированного многообразия, или интегралом от вектора F вдоль σ, и обозначается в общем случае, в случаях криволинейного и поверхностного интегралов соответственно.
Заметим, что если F(x,y,z) - сила, то - работа этой силы по перемещению материальной точки вдоль кривой, если F(x,y,z) - стационарное (не зависящее от времени) поле скоростей текущей жидкости, то - количество жидкости, протекающей через поверхность S в единицу времени (поток вектора через поверхность).
Если кривая задана параметрически или, что то же самое, в векторной форме,


то

и для криволинейного интеграла второго рода имеем


Так как dS = n · dS =(cosα , cosβ , cosγ), где cosα , cosβ , cosγ - направляющие косинусы единичного вектора нормали n и cosαdS=dydz , cosβdS=dxdz , cosγdS=dxdy , то для поверхностного интеграла второго рода получаем

Если поверхность задана параметрически или, что тоже самое, в векторной форме
r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k, (u,v)∈D
то

где - якобианы (определители матриц Якоби, или, что то же самое, матриц производных) вектор-функций соответственно.

Если поверхность S может быть задана одновременно уравнениями то поверхностный интеграл второго рода вычисляется по формуле

где D 1 , D 2 , D 3 - проекции поверхности S на координатные плоскости Y0Z , X0Z , X0Y соответственно и знак “+” берётся, если угол между вектором нормали и осью, вдоль которой ведётся проектирование, острый, а знак “–“, если этот угол тупой.

Свойства криволинейного и поверхностного интегралов второго рода

Отметим некоторые свойства криволинейного и поверхностного интегралов второго рода.
Теорема 1 . Криволинейный и поверхностный интегралы 2-го рода зависят от ориентации кривой и поверхности, точнее
.

Теорема 2 . Пусть σ=σ 1 ∪σ 2 и размерность пересечения dlim(σ 1 ∩σ 2)=n-1 . Тогда


Доказательство. Включив в число многообразий разбиения в определении интеграла по многообразию второго рода общую границу σ 1 с σ 2 получаем требуемое.

Пример №1 . Найти работу силы F при перемещении вдоль дуги линии L от точки M 0 до точки M 1 .
F=x 2 yi+yj; , L: отрезок M 0 M 1
M 0 (-1;3), M 0 (0;1)
Решение .
Находим уравнение прямой вдоль отрезка M 0 M 1 .
или y=-2x+1
dy=-2dx

Пределы изменения x: [-1; 0]

Криволинейный интеграл 2-ого рода вычисляется так же, как криволинейный интеграл 1-ого рода сведением к определённому. Для этого все переменные под знаком интеграла выражают через одну переменную, используя уравнение той линии, вдоль которой производится интегрирование.

а) Если линия АВ задана системой уравнений то

(10.3)

Для плоского случая, когда кривая задана уравнением криволинейный интеграл вычисляется по формуле: . (10.4)

Если линия АВ задана параметрическими уравнениями то

(10.5)

Для плоского случая, еслилиния АВ задана параметрическими уравнениями , криволинейный интеграл вычисляется по формуле:

, (10.6)

где - значения параметра t, соответствующие начальной и конечной точкам пути интегрирования.

Если линия АВ кусочно-гладкая, то следует воспользоваться свойством аддитивности криволинейного интеграла, разбив АВ на гладкие дуги.

Пример 10.1 Вычислим криволинейный интеграл вдоль контура, состоящего из части кривой от точки до и дуги эллипса от точки до .

Т. к. контур состоит из двух частей, воспользуемся свойством аддитивности криволинейного интеграла: . Сведём оба интеграла к определённым. Часть контура задана уравнением относительно переменной . Воспользуемся формулой (10.4 ), в которой поменяем ролями переменные. Т.е.

. После вычисления получим .

Для вычисления интеграла по контуру ВС перейдём к параметрической форме записи уравнения эллипса и воспользуемся формулой (10.6).

Обратите внимание на пределы интегрирования. Точке соответствует значение , а точке соответствует Ответ:
.

Пример 10.2. Вычислим вдоль отрезка прямой АВ , где А(1,2,3), В(2,5,8).

Решение . Задан криволинейный интеграл 2-ого рода. Для вычисления необходимо преобразовать его в определённый. Составим уравнения прямой. Её направляющий вектор имеет координаты .

Канонические уравнения прямой АВ: .

Параметрические уравнения этой прямой: ,

При
.

Воспользуемся формулой (10.5) :

Вычислив интеграл, получим ответ: .

5. Работа силы при перемещении материальной точки единичной массы из точки в точку вдоль кривой .

Пусть в каждой точке кусочно –гладкой кривой задан вектор, имеющий непрерывные функции-координаты: . Разобьём эту кривую на малых частей точками так, чтобы в точках каждой части значение функций
можно было считать постоянными, а сама часть могла быть принята за отрезок прямой (см. рис. 10.1). Тогда . Скалярное произведение постоянной силы, роль которой играет вектор , на прямолинейный вектор перемещения численно равно работе, которую совершает сила при перемещении материальной точки вдоль . Составим интегральную сумму . В пределе при неограниченном увеличении числа разбиений получим криволинейный интеграл 2-ого рода


. (10.7) Таким образом, физический смысл криволинейного интеграла 2-ого рода - это работа, произведённая силой при перемещении материальной точки от А к В по контуру L .

Пример 10.3. Вычислим работу, производимую вектором при перемещении точки вдоль части кривой Вивиани, заданной как пересечение полусферы и цилиндра , пробегаемой против часовой стрелки, если смотреть с положительной части оси OX.

Решение . Построим заданную кривую как линию пересечения двух поверхностей (см. рис. 10.3).


.

Чтобы свести подынтегральное выражение к одной переменной, перейдём в цилиндрическую систему координат: .

Т.к. точка перемещается по кривой , то удобно в качестве параметра выбрать переменную , которая вдоль контура меняется так, что . Тогда получаем следующие параметрические уравнения этой кривой:

.При этом
.

Подставим полученные выражения в формулу для вычисления циркуляции:

( - знак + указывает на то, что движение точки по контуру происходит против часовой стрелки)

Вычислим интеграл и получим ответ: .

Занятие 11 .

Формула Грина для односвязной области. Независимость криволинейного интеграла от пути интегрирования. Формула Ньютона-Лейбница. Нахождение функции по ее полному дифференциалу с помощью криволинейного интеграла (плоский и пространственный случаи).

ОЛ-1 гл.5, ОЛ-2 гл.3, ОЛ-4 гл.3 § 10, п. 10.3, 10.4.

Практика : ОЛ-6№№ 2318(а,б,д),2319(а,в),2322(а,г),2327,2329 илиОЛ-5 №№10.79, 82, 133, 135, 139.

Домашнее здание к занятию 11 : ОЛ-6 №№ 2318 (в,г), 2319(в,г), 2322(б,в), 2328, 2330 или ОЛ-5 №№ 10.80, 134, 136, 140

Формула Грина.

Пусть на плоскости дана односвязная область , ограниченная кусочно- гладким замкнутым контуром . (Область называется односвязной, если в ней любой замкнутый контур может быть стянут в точку этой области).

Теорема . Если функции и их частные производные Г , то

Рисунок 11.1

- формула Грина . (11.1)

Обозначает положительное направление обхода (против часовой стрелки).

Пример 11.1. Используя формулу Грина, вычислим интеграл по контуру, состоящему из отрезков OA, OB и большей дуги окружности , соединяющей точки A и B, если , , .

Решение . Построим контур (см. рис.11.2). Вычислим необходимые производные.

Рисунок 11.2
, ; , . Функции и их производные непрерывны в замкнутой области, ограниченной данным контуром. По формуле Грина данный интеграл .

После подстановки вычисленных производных получаем

. Двойной интеграл вычислим, переходя к полярным координатам:
.

Проверим ответ, вычислив интеграл непосредственно по контуру как криволинейный интеграл 2-ого рода.
.

Ответ :
.

2. Независимость криволинейного интеграла от пути интегрирования .

Пусть и - произвольные точки односвязной области пл. . Криволинейные интегралы, вычисленные по различным кривым, соединяющим эти точки, в общем случае имеют различные значения. Но при выполнении некоторых условий все эти значения могут оказаться одинаковыми. Тогда интеграл не зависит от формы пути, а зависит только от начальной и конечной точек.

Имеют место следующие теоремы.

Теорема 1 . Для того, чтобы интеграл
не зависел от формы пути, соединяющего точки и , необходимо и достаточно, чтобы этот интеграл по любому замкнутому контуру был равен нулю.

Теорема 2. . Для того, чтобы интеграл
по любому замкнутому контуру был равен нулю, необходимо и достаточно, чтобы функции и их частные производные были непрерывны в замкнутой области Г и чтобы выполнялось условие (11.2)

Таким образом, если выполняются условия независимости интеграла от формы пути (11.2) , то достаточно указать только начальную и конечную точки: (11.3)

Теорема 3. Если в односвязной областивыполняется условие , то существует функция такая, что . (11.4)

Эта формула называется формулой Ньютона – Лейбница для криволинейного интеграла.

Замечание. Напомним, что равенство является необходимым и достаточным условием того, что выражение
.

Тогда из выше сформулированных теорем следует, что если функции и их частные производные непрерывны в замкнутой области Г , в которой даны точки и , и , то

а) существует функция , такая, что ,

не зависит от формы пути, ,

в) имеет место формула Ньютона – Лейбница .

Пример 11.2 . Убедимся в том, что интеграл
не зависит от формы пути, и вычислим его.

Решение. .

Рисунок 11.3
Проверим выполнение условия (11.2) .
. Как видим, условие выполнено. Значение интеграла не зависит от пути интегрирования. Выберем путь интегрирования. Наиболее

простым путём для вычислений является ломаная линия АСВ , соединяющая точки начала и конца пути. (См. рис. 11.3)

Тогда .

3. Нахождение функции по её полному дифференциалу .

С помощью криволинейного интеграла, который не зависит от формы пути, можно найти функцию , зная её полный дифференциал. Эта задача решается следующим образом.

Если функции и их частные производные непрерывны в замкнутой области Г и , то выражение является полным дифференциалом некоторой функции . Кроме этого интеграл
, во-первых, не зависит от формы пути и, во-вторых, может быть вычислен по формуле Ньютона – Лейбница.

Вычислим
двумя способами.

Рисунок 11.4
а) Выберем в области точку с конкретными координатами и точку с произвольными координатами. Вычислим криволинейный интеграл по ломаной, состоящей из двух отрезков прямых, соединяющих эти точки, причём один из отрезков параллелен оси , а другой – оси . Тогда . (См. рис. 11.4)

Уравнение .

Уравнение .

Получаем: Вычислив оба интеграла, получаем в ответе некоторую функцию .

б) Теперь тот же интеграл вычислим по формуле Ньютона – Лейбница.

Теперь сравним два результата вычисления одного и того же интеграла. Функциональная часть ответа в пункте а) является искомой функцией , а числовая часть – её значением в точке .

Пример 11.3. Убедимся в том, что выражение
является полным дифференциалом некоторой функции и найдём её. Проверим результаты вычисления примера 11.2 по формуле Ньютона-Лейбница.

Решение. Условие существования функции (11.2) было проверено в предыдущем примере. Найдём эту функцию, для чего воспользуемся рисунком 11.4, причём примем за точку . Составим и вычислим интеграл по ломаной АСВ, где :

Как было сказано выше, функциональная часть полученного выражения и есть искомая функция
.

Проверим результат вычислений из примера 11.2 по формуле Ньютона –Лейбница:

Результаты совпали.

Замечание. Все рассмотренные утверждения верны и для пространственного случая, но с большим количеством условий.

Пусть кусочно-гладкая кривая принадлежит области в пространстве . Тогда, если функции и их частные производные непрерывны в замкнутой области , в которой даны точки и , и
(11.5 ), то

а) выражение является полным дифференциалом некоторой функции ,

б) криволинейный интеграл от полного дифференциала некоторой функции не зависит от формы пути и ,

в) имеет место формула Ньютона – Лейбница .(11.6 )

Пример 11.4 . Убедимся в том, что выражение является полным дифференциалом некоторой функции и найдём её.

Решение. Для ответа на вопрос о том, является ли данное выражение полным дифференциалом некоторой функции , вычислим частные производные от функций , ,
. (См. (11.5) ) ; ; ; ; ; .

Эти функции непрерывны вместе со своими частными производными в любой точке пространства .

Видим, что выполняются необходимые и достаточные условия существования : , , , ч. т. д.

Для вычисления функции воспользуемся тем, что линейный интеграл не зависит от пути интегрирования и может быть вычислен по формуле Ньютона-Лейбница. Пусть точка - начало пути, а некоторая точка - конец пути. Вычислим интеграл

по контуру, состоящему из отрезков прямых, параллельных координатным осям. (см.рис.11.5).

.

Рисунок 11.5
Уравнения частей контура: , ,
.

Тогда

, x здесь зафиксирован, поэтому ,

, здесь зафиксирован y , поэтому .

В итоге получаем: .

Теперь тот же интеграл вычислим по формуле Ньютона-Лейбница.

Приравняем результаты: .

Из полученного равенства следует, что , а

Занятие 12.

Поверхностный интеграл первого рода: определение, основные свойства. Правила вычисления поверхностного интеграла первого рода с помощью двойного интеграла. Приложения поверхностного интеграла первого рода: площадь поверхности, масса материальной поверхности, статические моменты относительно координатных плоскостей, моменты инерции и координаты центра тяжести . ОЛ-1 гл.6, ОЛ 2 гл.3, ОЛ-4§ 11.

Практика : ОЛ-6 №№ 2347, 2352, 2353 или ОЛ-5 №№ 10.62, 65, 67.

Домашнее задание к занятию 12:

ОЛ-6 №№ 2348, 2354 или ОЛ-5 №№ 10.63, 64, 68.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!