Образовательный портал - Varnavinschool

H2so4 описание. Химические элементы

Физические свойства серной кислоты:
Тяжелая маслянистая жидкость («купоросное масло»);
плотность 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).

Теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

Промышленное производство серной кислоты (контактный способ):

1) 4FeS 2 + 11O 2 → 2Fe 2 O 3 + 8SO 2

2) 2SO 2 + O 2 V 2 O 5 → 2SO 3

3) nSO 3 + H 2 SO 4 → H 2 SO 4 ·nSO 3 (олеум)

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое «. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.
Из печи выходит печной газ, состав которого: SO 2 , O 2 , пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).
В контактном аппарате происходит окисление сернистого газа с использованием катализатора V 2 O 5 (пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым. Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С (т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся серная кислота закипает и превращается в пар. Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2 SO 4 ·nSO 3

Химические свойства серной кислоты:

H 2 SO 4 — сильная двухосновная кислота, одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

1) В водном растворе серная кислота диссоциирует , образуя ион водорода и кислотный остаток:
H 2 SO 4 = H + + HSO 4 — ;
HSO 4 — = H + + SO 4 2- .
Суммарное уравнение:
H 2 SO 4 = 2H + + SO 4 2- .

2) Взаимодействие серной кислоты с металлами :
Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:
Zn 0 + H 2 +1 SO 4 (разб) → Zn +2 SO 4 + H 2

3) Взаимодействие серной кислоты с основными оксидами:
CuO + H 2 SO 4 → CuSO 4 + H 2 O

4) Взаимодействие серной кислоты с гидроксидами:
H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O
H 2 SO 4 + Cu(OH) 2 → CuSO 4 + 2H 2 O

5) Обменные реакции с солями:
BaCl 2 + H 2 SO 4 → BaSO 4 ↓ + 2HCl
Образование белого осадка BaSO 4 (нерастворимого в кислотах) используется для обнаружения серной кислоты и растворимых сульфатов (качественная реакция на сульфат ион).

Особые свойства концентрированной H 2 SO 4:

1) Концентрированная серная кислота является сильным окислителем ; при взаимодействии с металлами (кроме Au, Pt) восстанавливаться до S +4 O 2 , S 0 или H 2 S -2 в зависимости от активности металла. Без нагревания не реагирует с Fe, Al, Cr – пассивация. При взаимодействии с металлами, обладающими переменной валентностью, последние окисляются до более высоких степеней окисления , чем в случае с разбавленным раствором кислоты: Fe 0 Fe 3+ , Cr 0 Cr 3+ , Mn 0 Mn 4+ ,Sn 0 Sn 4+

Активный металл

8 Al + 15 H 2 SO 4(конц.) →4Al 2 (SO 4) 3 + 12H 2 O + 3H 2 S
4│2Al 0 – 6e — → 2Al 3+ — окисление
3│ S 6+ + 8e → S 2– восстановление

4Mg+ 5H 2 SO 4 → 4MgSO 4 + H 2 S­ + 4H 2 O

Металл средней активности

2Cr + 4 H 2 SO 4(конц.) → Cr 2 (SO 4) 3 + 4 H 2 O + S
1│ 2Cr 0 – 6e →2Cr 3+ — окисление
1│ S 6+ + 6e → S 0 – восстановление

Металл малоактивный

2Bi + 6H 2 SO 4(конц.) → Bi 2 (SO 4) 3 + 6H 2 O + 3SO 2
1│ 2Bi 0 – 6e → 2Bi 3+ – окисление
3│ S 6+ + 2e →S 4+ — восстановление

2Ag + 2H 2 SO 4 →Ag 2 SO 4 + SO 2 ­ + 2H 2 O

2) Концентрированная серная кислота окисляет некоторые неметаллы как правило до максимальной степени окисления, сама восстанавливается до S +4 O 2:

С + 2H 2 SO 4 (конц) → CO 2 ­ + 2SO 2 ­ + 2H 2 O

S+ 2H 2 SO 4 (конц) → 3SO 2 ­ + 2H 2 O

2P+ 5H 2 SO 4 (конц)→5SO 2 ­ + 2H 3 PO 4 + 2H 2 O

3) Окисление сложных веществ:
Серная кислота окисляет HI и НВг до свободных галогенов:
2 КВr + 2Н 2 SO 4 = К 2 SО 4 + SO 2 + Вr 2 + 2Н 2 О
2 КI + 2Н 2 SО 4 = К 2 SO 4 + SO 2 + I 2 + 2Н 2 О
Концентрированная серная кислота не может окислить хлорид-ионы до свободного хлора, что дает возможность получать НСl по реакции обмена:
NаСl + Н 2 SO 4 (конц.) = NаНSO 4 + НСl

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:
С 2 Н 5 ОН = С 2 Н 4 + Н 2 О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:
C 6 H 12 O 6 + 12H 2 SO 4 = 18H 2 O + 12SO 2 + 6CO 2 .

Кислоты — это химические соединения, состоящие из атомов водорода и кислотных остатков, к примеру, SO4, SO3, PO4 и т. д. Они бывают неорганическими и органическими. К первым относятся соляная, фосфорная, сульфидная, азотная, серная кислота. Ко вторым — уксусная, пальмитиновая, муравьиная, стеариновая и т. д.

Что такое серная кислота

Эта кислота состоит из двух атомов гидрогена и кислотного остатка SO4. Она имеет формулу H2SO4.

Серная кислота или, как она еще называется, сульфатная, относится к неорганическим кислородосодержащим двухосновным кислотам. Это вещество считается одним из самых агрессивных и химически активных. В большинстве химических реакций она выступает в качестве окислителя. Эта кислота может использоваться в концентрированном или разбавленном виде, в этих двух случаях она имеет немного различные химические свойства.

Физические свойства

Серная кислота в нормальных условиях имеет жидкое состояние, температура ее кипения составляет примерно 279,6 градуса по Цельсию, температура замерзания, когда она превращается в твердые кристаллики, — около -10 градусов для стопроцентной и около -20 для 95-процентной.

Чистая стопроцентная сульфатная кислота представляет собой маслянистое жидкое вещество без запаха и цвета, которое обладает почти вдвое большей плотностью, нежели вода — 1840 кг/м3.

Химические свойства сульфатной кислоты

Серная кислота реагирует с металлами, их оксидами, гидроксидами и солями. Разбавленная водой в различных пропорциях, она может вести себя по-разному, поэтому рассмотрим подробнее свойства концентрированного и слабого раствора серной кислоты по отдельности.

Концентрированный раствор серной кислоты

Концентрированным считается раствор, в котором содержится от 90 процентов сульфатной кислоты. Такой раствор серной кислоты способен реагировать даже с малоактивными металлами, а также с неметаллами, гидроксидами, оксидами, солями. Свойства такого раствора сульфатной кислоты схожи с таковыми у концентрированной нитратной кислоты.

Взаимодействие с металлами

При химической реакции концентрированного раствора сульфатной кислоты с металлами, находящимися правее водорода в электрохимическом ряду напряжений металлов (то есть с не самыми активными), образуются такие вещества: сульфат того металла, с которым происходит взаимодействие, вода и диоксид серы. К металлам, в результате взаимодействия с которыми образуются перечисленные вещества, относятся медь (купрум), ртуть, висмут, серебро (аргентум), платина и золото (аурум).

Взаимодействие с неактивными металлами

С металлами, которые стоят левее водорода в ряду напряжений, концентрированная серная кислота ведет себя немного по-другому. В результате такой химической реакции образуются следующие вещества: сульфат определенного металла, сероводород либо чистая сера и вода. К металлам, с которыми проходит подобная реакция, относятся также железо (ферум), магний, манган, бериллий, литий, барий, кальций и все остальные, находящиеся в ряду напряжений левее водорода, кроме алюминия, хрома, никеля и титана — с ними концентрированная сульфатная кислота во взаимодействие не вступает.

Взаимодействие с неметаллами

Данное вещество — сильный окислитель, поэтому оно способно участвовать в окислительно-восстановительных химических реакциях с неметаллами, такими как, к примеру, углерод (карбон) и сера. В результате таких реакций обязательно выделяется вода. При добавлении этого вещества к углероду также выделяется углекисый газ и диоксид сульфура. А если добавить кислоту к сере, получим только диоксид серы и воду. В такой химической реакции сульфатная кислота играет роль окислителя.

Взаимодействие с органическими веществами

Среди реакций серной кислоты с органическими веществами можно выделить обугливание. Такой процесс происходит при столкновении данного вещества с бумагой, сахаром, волокнами, деревом и т. д. При этом в любом случае выделяется углерод. Карбон, который образовался в процессе реакции, может частично взаимодействовать с серной кислотой при ее избытке. На фото показана реакция сахара с раствором сульфатной кислоты средней концентрации.

Реакции с солями

Также концентрированный раствор H2SO4 реагирует с сухими солями. В этом случае происходит стандартная реакция обмена, при которой образуется сульфат металла, который присутствовал в структуре соли, и кислота с остатком, который был в составе соли. Однако с растворами солей концентрированная серная кислота не вступает в реакцию.

Взаимодействие с другими веществами

Также данное вещество может вступать в реакции с оксидами металлов и их гидроксидами, в этих случаях происходят реакции обмена, в первом выделяется сульфат металла и вода, во втором - то же самое.

Химические свойства слабого раствора сульфатной кислоты

Разбавленная серная кислота реагирует с многими веществами и имеет такие же свойства, как и все кислоты. Она, в отличие от концентрированной, вступает во взаимодействие только с активными металлами, то есть теми, которые находятся левее водорода в ряду напряжений. В таком случае происходит такая же реакция замещения, как и в случае с любой кислотой. При этом выделяется водород. Также такой раствор кислоты взаимодействует с растворами солей, в результате чего происходит реакция обмена, уже рассмотренная выше, с оксидами — так же, как и концентрированная, с гидроксидами - тоже так же. Кроме обыкновенных сульфатов, существуют также гидросульфаты, которые являются продуктом взаимодействия гидроксида и серной кислоты.

Как узнать, что в растворе содержится серная кислота или сульфаты

Для определения, присутствуют ли эти вещества в растворе, применяется специальная качественная реакция на сульфат-ионы, которая позволяет это узнать. Она заключается в добавлении бария или его соединений в раствор. В результате этого может выпасть осадок белого цвета (сульфат бария), что показывает наличие сульфатов или серной кислоты.

Как добывают серную кислоту

Самым распространенным способом промышленного получения данного вещества является добыча его из пирита железа. Этот процесс происходит в три этапа, на каждом из которых происходит определенная химическая реакция. Рассмотрим их. Сначала к пириту добавляют кислород, вследствие чего образуется оксид ферума и диоксид серы, который используется для дальнейших реакций. Это взаимодействие происходит при высокой температуре. Далее следует этап, на котором посредством добавления кислорода в присутствии катализатора, в качестве которого выступает оксид ванадия, получают триоксид серы. Теперь, на последней стадии, к полученному веществу добавляют воду, при этом получают сульфатную кислот. Это самый распространенный процесс промышленного добывания сульфатной кислоты, он используется наиболее часто потому, что пирит - самое доступное сырье, подходящее для синтеза описанного в этой статье вещества. Серную кислоту, полученную с помощью такого процесса, используют в различных сферах промышленности - как в химической, так и во многих других, к примеру, при переработке нефти, обогащении руд и т. д. Также ее использование часто предусмотрено в технологии изготовления множества синтетических волокон.

Новая тема: Серная кислота – H 2 SO 4

1. Электронная и структурная формулы серой кислоты

*S - сера находится в возбуждённом состоянии 1S 2 2S 2 2P 6 3S 1 3P 3 3d 2

Электронная формула молекулы серной кислоты:

Структурная формула молекулы серной кислоты:

1 H - -2 O -2 O

1 H - -2 O -2 O

2.Получение:

Химические процессы производства серной кислоты можно представить в виде следующей схемы:

S +O 2 +O 2 +H 2 O

FeS 2 SO 2 SO 3 H 2 SO 4

Получают серную кислоту в три стадии:

1стадия. В качестве сырья применяют серу, железный колчедан или сероводород.

4 FeS 2 + 11 O 2 = 2Fe 2 O 3 + 8SO 2

2 стадия . Окисление SO 2 до SO 3 кислородом при помощи катализатора V 2 O 5

2SO 2 +O 2 =2SO 3 +Q

3стадия . Для превращения SO 3 в серную кислот применяют не воду т.к. происходит сильное разогревание, а концентрированный раствор серной кислоты.

SO 3 +H 2 O H 2 SO 4

В результате получают олеум – раствор SO 3 в серной кислоте.

Схема цепи аппаратов (см.учебник стр.105)

3.Физические свойства.

а) жидкость б) бесцветная в)тяжелая (купоросное масло) г)нелетучая

г) при растворении в воде происходит сильное разогревание (поэтому серную кислоту непременно нужно наливать в воду не наоборот!)

4. Химические свойства Серной кислоты.

Разбавленная H 2 SO 4

Концентрированная H 2 SO 4

Обладает всеми свойствами кислот

Обладает специфическими свойствами

1.Изменяет окраску индикатора:

H 2 SO 4 H + +HSO 4 -

HSO 4 - H + +SO 4 2-

2.Реагирует с металлами, стоящими до водорода:

Zn+ H 2 SO 4 ZnSO 4 +H 2

3.Реагирует с основными и амфотерными оксидами:

MgO+ H 2 SO 4 MgSO 4 +H 2 O

4.Взаимодействует с основаниям (реакция нейтрализации)

2NaOH+H 2 SO 4 Na 2 SO 4 +2H 2 O

при избытке кислоты образуются кислые соли

NaOH+H 2 SO 4 NaHSO 4 +H 2 O

5.Реагирует с сухими солями, вытесняя из них другие кислоты (это самая сильная и нелетучая кислота):

2NaCl+H 2 SO 4 Na 2 SO 4 +2HCl

6.Реагирует с растворами солей, если при этом образуется нерастворимая соль:

BaCl 2 +H 2 SO 4 BaSO 4 +2HCl -

белый осадок

качественная реакция на ион SO 4 2-

7.При нагревании разлагается:

H 2 SO 4 H 2 O+SO 3

1.Концентрированная H 2 SO 4 - сильнейший окислитель, при нагревании она реагирует со всеми металлами (кроме Au и Pt). В этих реакциях в зависимости от активности металла и условий выделяется S,SO 2 или H 2 S

Например:

Cu+ конц 2H 2 SO 4 CuSO 4 +SO 2 +H 2 O

2.конц. H 2 SO 4 пассивирует железо и алюминий,

поэтому её можно перевозить в стальных и

алюминиевых цистернах.

3. конц. H 2 SO 4 хорошо поглощает воду

H 2 SO 4 +H 2 O H 2 SO 4 *2H 2 O

Поэтому она обугливает органические вещества

5.Применение : Серная кислота -один из важнейших продуктов, используемых в различных отраслях промышленности. Основными её потребителями являются производство минеральных удобрений, металлургия, чистка нефтепродуктов. Серная кислота применяется при производстве других кислот, моющих средств, взрывчатых веществ, лекарств, красок, в качестве электролитов для свинцовых аккумуляторов. (Учебник стр.103).

6.Соли серной кислоты

Серная кислота диссоциирует ступенчато

H 2 SO 4 H + +HSO 4 -

HSO 4 - H + +SO 4 2-

поэтому она образует два вида солее – сульфаты и гидросульфаты

Например: Na 2 SO 4 - сульфат натрия (средняя соль)

Na HSO 4 - гидросульфат натрия (кислая соль)

Наибольшее применение находят:

Na 2 SO 4 * 10H 2 O –глауберова соль (применяется при производстве соды, стекла, в медицине и

ветеринарии.

СaSO 4 *2H 2 O –гипс

СuSO 4 *5H 2 O –медный купорос(применяется в сельском хозяйстве).

Лабораторный опыт

Химические свойства серной кислоты.

Оборудование : Пробирки.

Реактивы: серная кислота, метиловый – оранжевый, цинк, оксид магния, гидроксид натрия и фенолфталеин, карбонат натрия, хлорид бария.

б) Заполни таблицу наблюдений

Любая кислота представляет собой сложное вещество, молекула которого содержит один или несколько атомов водорода и кислотный остаток.

Формула серной кислоты - H2SO4. Следовательно, в состав молекулы серной кислоты входят два атома водорода и кислотный остаток SO4.

Образуется серная кислота при взаимодействии оксида серы с водой

SO3+H2O -> H2SO4

Чистая 100%-я серная кислота (моногидрат) - тяжёлая жидкость, вязкая как масло, без цвета и запаха, с кислым «медным» вкусом. Уже при температуре +10 °С она застывает и превращается в кристаллическую массу.

Концентрированная серная кислота содержит приблизительно 95% H2 SO4. И застывает она при температуре ниже –20°С.

Взаимодействие с водой

Серная кислота хорошо растворяется в воде, смешиваясь с ней в любых соотношениях. При этом выделяется большое количество тепла.

Серная кислота способна поглощать пары воды из воздуха. Это её свойство используют в промышленности для осушения газов. Осушают газы, пропуская их через специальные ёмкости с серной кислотой. Конечно же, этот способ можно применять только для тех газов, которые не вступают в реакцию с ней.

Известно, что при попадании серной кислоты на многие органические вещества, особенно углеводы, эти вещества обугливаются. Дело в том, что углеводы, как и вода, содержат и водород, и кислород. Серная кислота отнимает у них эти элементы. Остаётся уголь.

В водном растворе H2SO4 индикаторы лакмус и метиловый оранжевый окрашиваются в красный цвет, что говорит о том, что этот раствор имеет кислый вкус.

Взаимодействие с металлами

Как и любая другая кислота, серная кислота способна замещать атомы водорода на атомы металла в своей молекуле. Взаимодействует она практически со всеми металлами.

В разбавленном виде серная кислота реагирует с металлами как обычная кислота. В результате реакции образуется соль с кислотным остатком SO4 и водород.

Zn + H2SO4 = ZnSO4 + H2

А концентрированная серная кислота является очень сильным окислителем. Она окисляет все металлы, независимо от их положения в ряду напряжений. И при реакции с металлами она сама восстанавливается до SO2. Водород не выделяется.

Сu + 2 H2SO4 (конц) = CuSO4 + SO2 + 2H2O

Zn + 2 H2SO4 (конц) = ZnSO4 + SO2 + 2H2O

А вот золото, железо, алюминий, металлы платиновой группы в серной кислоте не окисляются. Поэтому серную кислоту перевозят в стальных цистернах.

Сернокислые соли, которые получаются в результате таких реакций, называют сульфатами. Они не имеют цвета, легко кристаллизуются. Некоторые из них хорошо растворяются в воде. Малорастворимыми являются только CaSO4 и PbSO4 . Почти не растворяется в воде BaSO4.

Взаимодействие с основаниями


Реакция взаимодействия кислоты с основаниями называется реакцией нейтрализации. В результате реакции нейтрализации серной кислоты образуется соль, содержащая кислотный остаток SO4, и вода H2O.

Примеры реакций нейтрализации серной кислоты:

H2SO4 + 2 NaOH = Na2SO4 + 2 H2O

H2SO4 + CaOH = CaSO4 + 2 H2O

Серная кислота вступает в реакцию нейтрализации как с растворимыми, так и с нерастворимыми основаниями.

Так как в молекуле серной кислоты два атома водорода, и для её нейтрализации требуется два основания, то она относится к двухосновным кислотам.

Взаимодействие с основными оксидами

Из школьного курса химии нам известно, что оксидами называют сложные вещества, в состав которых входят два химических элемента, одним из которых является кислород в степени окисления -2 . Основными оксидами называют оксиды 1, 2 и некоторых 3 валентных металлов. Примеры основных оксидов: Li2O, Na2O, CuO, Ag2O, MgO, CaO, FeO, NiO.

С основными оксидами серная кислота вступает в реакцию нейтрализации. В результате такой реакции, как и в реакции с основаниями, образуются соль и вода. Соль содержит кислотный остаток SO4.

CuO + H2SO4 = CuSO4 + H2O

Взаимодействие с солями

Серная кислота взаимодействует с солями более слабых или летучих кислот, вытесняя из них эти кислоты. В результате такой реакции образуется соль с кислотным остатком SO4 и кислота

H2SO4+BaCl2=BaSO4+2HCl

Применение серной кислоты и её соединений


Бариева каша ВaSO4 способна задерживать рентгеновские лучи. Заполняя ею полые органы человеческого организма, рентгенологи исследуют их.

В медицине и строительстве широко применяют природный гипс CaSO4 * 2H2O, кристаллогидрат сульфата кальция. Глауберова соль Na2SO4 * 10H2O используется в медицине и ветеринарии, в химической промышленности - для производства соды и стекла. Медный купорос CuSO4 * 5H2O известен садоводам и агрономам, которые используют его для борьбы с вредителями и болезнями растений.

Серная кислота широко используется в различных отраслях промышленности: химической, металлообрабатывающей, нефтяной, текстильной, кожевенной и других.

Структурная формула

Истинная, эмпирическая, или брутто-формула: H 2 SO 4

Химический состав Серной кислоты

Молекулярная масса: 98,076

Серная кислота H 2 SO 4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO 3 . Если молярное отношение SO 3: H 2 O меньше 1, то это водный раствор серной кислоты, если больше 1 - раствор SO 3 в серной кислоте (олеум).

Название

В XVIII-XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) - купоросы.

Получение серной кислоты

Промышленный (контактный) способ

В промышленности серную кислоту получают окислением диоксида серы (сернистый газ, образующийся в процессе сжигания серы или серного колчедана) до триоксида (серного ангидрида)с последующим взаимодействием SO 3 с водой. Получаемую данным способом серную кислоту также называют контактной (концентрация 92-94 %).

Нитрозный (башенный) способ

Раньше серную кислоту получали исключительно нитрозным методом в специальных башнях, а кислоту называли башенной (концентрация 75 %). Сущность этого метода заключается в окислении диоксида серы диоксидом азота в присутствии воды.

Другой способ

В тех редких случаях, когда сероводород (H 2 S) вытесняет сульфат(SO 4 -) из соли (с металлами Cu,Ag,Pb,Hg) побочным продуктом является серная кислота. Сульфиды данных металлов обладают высочайшей прочностью, а также отличительным чёрным окрасом.

Физические и физико-химические свойства

Очень сильная кислота, при 18 о С pK a (1) = −2,8, pK a (2) = 1,92 (К z 1,2 10 -2); длины связей в молекуле S=O 0,143 нм, S-OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H 2 SO 4 и 1,7 % H 2 О с температурой кипения 338,8 о С). Серная кислота, отвечающая 100%-ному содержанию H 2 SO 4 , имеет состав (%): H 2 SO 4 99,5, HSO 4 - - 0,18, H 3 SO 4 + - 0,14, H 3 O + - 0,09, H 2 S 2 O 7 , - 0,04, HS 2 O 7 - - 0,05. Смешивается с водой и SO 3 , во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на H 3 О + , HSO 3 + , и 2НSO 4 - . Образует гидраты H 2 SO 4 ·nH 2 O, где n = 1, 2, 3, 4 и 6,5.

Олеум

Растворы серного ангидрида SO 3 в серной кислоте называются олеумом, они образуют два соединения H 2 SO 4 ·SO 3 и H 2 SO 4 ·2SO 3 . Олеум содержит также пиросерные кислоты. Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H 2 SO 4 . Температура кипения олеума с увеличением содержания SO 3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H 2 SO 4 достигает минимума. С увеличением концентрации SO 3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

lg p=A-B/T+2,126

величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H 2 SO 4 и SO 3 , при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси. С повышением температуры усиливается диссоциация. Максимальную вязкость имеет олеум H 2 SO 4 ·SO 3 , с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO 3 и 92 % H 2 SO 4 и максимально при концентрации 84 и 99,8 % H 2 SO 4 . Для олеума минимальное ρ при концентрации 10 % SO 3 . С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.

Химические свойства

Серная кислота в концентрированном виде при нагревании - довольно сильный окислитель. Окисляет HI и частично HBr до свободных галогенов. Окисляет многие металлы (исключения: Au, Pt, Ir, Rh, Ta.). При этом концентрированная серная кислота восстанавливается до SO 2 . На холоде в концентрированной серной кислоте Fe, Al, Cr, Co, Ni, Ba пассивируются и реакции не протекают. Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H 2 S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H 2 SO 4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ. Разбавленная H 2 SO 4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением. Окислительные свойства для разбавленной H 2 SO 4 нехарактерны. Серная кислота образует два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H 2 SO 5 и пероксодисерная H 2 S 2 O 8 кислоты. Серная кислота реагирует также с основными оксидами, образуя сульфат и воду. На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты. Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например.

Применение

Серную кислоту применяют:

  • в обработке руд, особенно при добыче редких элементов, в том числе урана, иридия, циркония, осмия и т. п.;
  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности - зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
    • Для восстановления смол в фильтрах на производстве дистилированной воды.

Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты - производство минеральных удобрений. На P 2 O 5 фосфорных удобрений расходуется в 2,2-3,4 раза больше по массе серной кислоты, а на (NH 4) 2 SO 4 серной кислоты 75 % от массы расходуемого (NH 4) 2 SO 4 . Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Исторические сведения

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну. В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO 4 7H 2 O и CuSO 4 5H 2 O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке. Схема получения серной кислоты из железного купороса - термическое разложение сульфата железа (II) с последующим охлаждением смеси. В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путём поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. В СССР такой способ просуществовал вплоть до 1955 г. Алхимикам XV в известен был также способ получения серной кислоты из пирита - серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах. Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. В настоящее время серную кислоту получают каталитическим окислением (на V 2 O 5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума. В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. В 1913 году Россия по производству серной кислоты занимала 13 место в мире.

Дополнительные сведения

Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты. Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата. Например, в результате извержения вулкана Ксудач (Полуостров Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже. Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3·10 7 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994.

Стандарты

  • Кислота серная техническая ГОСТ 2184-77
  • Кислота серная аккумуляторная. Технические условия ГОСТ 667-73
  • Кислота серная особой чистоты. Технические условия ГОСТ 1422-78
  • Реактивы. Кислота серная. Технические условия ГОСТ 4204-77
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!