Образовательный портал - Varnavinschool

Вращение тела вокруг неподвижной оси. Вращательное движение твердого тела: уравнение, формулы Вращательное движение тела с полным

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.

Движение твердого тела называется вращательным, если во время движения все точки тела, расположенные на некоторой прямой, называемой осью вращения, остаются неподвижными (рис. 2.15).

Положение тела при вращательном движении принято определять углом поворота тела , который измеряется как двугранный угол между неподвижной и подвижной плоскостями, проходящими через ось вращения. Причем, подвижная плоскость связана с вращающимся телом.

Введем в рассмотрение подвижную и неподвижную системы координат, начало которых разместим в произвольной точке О оси вращения. Ось Oz, общую для подвижной и неподвижной систем координат, направим по оси вращения, ось Ох неподвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в неподвижной плоскости, ось Ох 1 подвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в подвижной плоскости (рис. 2.15).

Если рассматривать сечение тела плоскостью, перпендикулярной оси вращения, то угол поворота φ можно определять как угол между неподвижной осью Ох и подвижной осью Ох 1 , неизменно связанной с вращающимся телом (рис. 2.16).

Принято направление отсчета угла поворота тела φ против хода часовой стрелки считать положительным, если смотреть с положительного направления оси Oz.

Равенство φ = φ(t) , описывающее изменение угла φ во времени, называется законом или уравнением вращательного движения твердого тела.

Быстрота и направление изменения угла поворота твердого тела характеризуются угловой скоростью. Абсолютное значение угловой скорости принято обозначать буквой греческого алфавита ω (омега). Алгебраическое значение угловой скорости принято обозначать . Алгебраическое значение угловой скорости равно первой производной по времени от угла поворота:

. (2.33)

Единицы измерения угловой скорости равны единицам измерения угла, деленным на единицу измерения времени, например, град/мин, рад/ч. В системе СИ единица измерения угловой скорости рад/с, но чаще наименование этой единицы измерения записывается в виде 1/с.

Если > 0, то тело вращается против хода часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Если < 0, то тело вращается по ходу часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Быстрота и направление изменения угловой скорости характеризуются угловым ускорением. Абсолютную величину углового ускорения принято обозначать буквой греческого алфавита e (эпсилон). Алгебраическую величину углового ускорения принято обозначать . Алгебраическая величина углового ускорения равна первой производной по времени от алгебраического значения угловой скорости или второй производной от угла поворота:


Единицы измерения углового ускорения равны единицам измерения угла, деленным на единицу измерения времени в квадрате. Например, град/с 2 , рад/ч 2 . В системе СИ единицей измерения углового ускорения является рад/с 2 , но чаще наименование этой единицы измерения записывается в виде 1/с 2 .

Если алгебраические значения угловой скорости и углового ускорения имеют один знак, то угловая скорость с течением времени увеличивается по модулю, а если разный, то уменьшается.

Если угловая скорость постоянна (ω = const), то принято говорить, что вращение тела равномерное. В этом случае:

φ = · t + φ 0 , (2.35)

где φ 0 - начальный угол поворота.

Если постоянно угловое ускорение (e = const), то принято говорить, что вращение тела равноускоренное (равнозамедленное). В этом случае:

где 0 - начальная угловая скорость.

В остальных случаях для определения зависимости φ от и необходимо интегрировать выражения (2.33), (2.34) при заданных начальных условиях.

На рисунках направление вращения тела иногда показывают изогнутой стрелкой (рис. 2.17).

Часто в механике угловая скорость и угловое ускорение рассматриваются как векторные величины и . Оба эти вектора направляются по оси вращения тела. Причем вектор направляют в одну сторону с ортом, определяющим направление оси координат, совпадающей с осью вращения, если >0, и в противоположную, если
Аналогично выбирают направление вектора (рис. 2.18).

При вращательном движении тела каждая из его точек (кроме точек, расположенных на оси вращения) перемещается по траектории, представляющей собой окружность с радиусом, равным кратчайшему расстоянию от точки до оси вращения (рис. 2.19).

Поскольку для окружности касательная в любой ее точке составляет угол 90° с радиусом, то вектор скорости точки тела, совершающего вращательное движение, будет направлен перпендикулярно радиусу и лежать в плоскости окружности, являющейся траекторией движения точки. Касательная составляющая ускорения будет лежать на одной прямой со скоростью, а нормальная будет направлена по радиусу к центру окружности. Поэтому иногда касательную и нормальную составляющие ускорения при вращательном движении называют соответственно вращательной и центростремительной (осестремительной) составляющими (рис. 2.19)

Алгебраическая величина скорости точки определяется выражением:

, (2.37)

где R = OM - кратчайшее расстояние от точки до оси вращения.

Алгебраическая величина касательной составляющей ускорения определяется выражением:

. (2.38)

Модуль нормальной составляющей ускорения определяется выражением:

. (2.39)

Вектор ускорения точки при вращательном движении определяется по правилу параллелограмма как геометрическая сумма касательной и нормальной составляющих. Соответственно модуль ускорения может быть определен по теореме Пифагора :

Если угловая скорость и угловое ускорение определены как векторные величины , , то векторы скорости, касательной и нормальной составляющих ускорения могут быть определены по формулам:

где - радиус-вектор, проведенный в точку М из произвольной точки оси вращения (рис. 2.20).

Решение задач на вращательное движение одного тела обычно не вызывает никаких трудностей. Используя формулы (2.33)-(2.40), можно легко определить любой неизвестный параметр.

Определенные сложности возникают при решении задач, связанных с исследованием механизмов, состоящих из нескольких взаимосвязанных тел, совершающих как вращательное, так и поступательное движение.

Общий подход к решению подобных задач заключается в том, что движение от одного тела к другому передается через одну точку - точку касания (контакта). Причем у соприкасающихся тел равны скорости и касательные составляющие ускорений в точке контакта. Нормальные составляющие ускорения у соприкасающихся тел в точке контакта различны, они зависят от траектории движения точек тел.

При решении задач такого типа удобно в зависимости от конкретных обстоятельств использовать как формулы, приведенные в разделе 2.3, так и формулы для определения скорости и ускорения точки при задании ее движения естественным (2.7), (2.14) (2.16) или координатным (2.3), (2.4), (2.10), (2.11) способами. При этом если движение тела, к которому принадлежит точка, вращательное, траектория движения точки будет представлять собой окружность. Если движение тела прямолинейное поступательное, то траектория движения точки будет представлять собой прямую линию.

Пример 2.4. Тело вращается вокруг неподвижной оси. Угол поворота тела изменяется по закону φ = π · t 3 рад. Для точки, находящейся на расстоянии OM = R = 0,5 м от оси вращения, определить скорость, касательную, нормальную составляющие ускорения и ускорение в момент времени t 1 = 0,5 с. Показать направление этих векторов на чертеже.

Рассмотрим сечение тела плоскостью, проходящей через точку О перпендикулярно оси вращения (рис. 2.21). На этом рисунке точка О - точка пересечения оси вращения и секущей плоскости, точки М о и M 1 - соответственно начальное и текущее положение точки М. Через точки О и М о проведем неподвижную ось Ох , а через точки О и М 1 - подвижную ось Ох 1 . Угол между этими осями будет равен

Закон изменения угловой скорости тела найдем, продифференцировав закон изменения угла поворота:

В момент t 1 угловая скорость будет равна

Закон изменения углового ускорения тела найдем, продифференцировав закон изменения угловой скорости:

В момент t 1 угловое ускорение будет равно:

1/с 2 ,

Алгебраические величины векторов скорости, касательной составляющей ускорения, модуля нормальной составляющей ускорения и модуля ускорения найдем по формулам (2.37), (2.38), (2.39), (2.40):

М/с 2 ;

м/с 2 .

Так как угол φ 1 >0, то откладывать его от оси Ох будем против хода часовой стрелки. А так как > 0, то векторы будут направлены перпендикулярно радиусу OM 1 таким образом, чтобы мы видели их вращающимися против хода часовой стрелки. Вектор будет направлен по радиусу OM 1 к оси вращения. Вектор построим по правилу параллелограмма на векторах τ и .

Пример 2.5. По заданному уравнению прямолинейного поступательного движения груза 1 х = 0,6t 2 - 0,18 (м) определить скорость, а также касательную, нормальную составляющую ускорения и ускорение точки М механизма в момент времени t 1 , когда путь, пройденный грузом 1, равен s = 0,2 м. При решении задачи будем считать, что проскальзывание в точке контакта тел 2 и 3 отсутствует, R 2 = 1,0 м, r 2 = 0,6 м, R 3 = 0,5 м (рис. 2.22).

Закон прямолинейного поступательного движения груза 1 задан в координатной форме. Определим момент времени t 1 , для которого путь, пройденный грузом 1, будет равен s

s = x(t l)-x(0) ,

откуда получим:

0,2 = 0,18 + 0,6t 1 2 - 0,18.

Следовательно,

Продифференцировав по времени уравнение движения, найдем проекции скорости и ускорения груза 1 на ось Ох:

м/с 2 ;

В момент t = t 1 проекция скорости груза 1 будет равна:

то есть будет больше нуля, как и проекция ускорения груза 1. Следовательно, груз 1 будет в момент t 1 двигаться вниз равноускоренно, соответственно, тело 2 будет вращаться равноускоренно в направлении против хода часовой стрелки, а тело 3 - по ходу часовой стрелки.

Тело 2 приводится во вращение телом 1 через нить, намотанную на малый барабан. Поэтому модули скоростей точек тела 1, нити и поверхности малого барабана тела 2 равны, также равны будут и модули ускорений точек тела 1, нити и касательной составляющей ускорения точек поверхности малого барабана тела 2. Следовательно, модуль угловой скорости тела 2 можно определить как

Модуль углового ускорения тела 2 будет равен:

1/с 2 .

Определим модули скорости и касательной составляющей ускорения для точки К тела 2 - точки контакта тел 2 и 3:

м/с, м/с 2

Так как тела 2 и 3 вращаются без взаимного проскальзывания, модули скорости и касательной составляющей ускорения точки К - точки контакта у этих тел будут равны.

направим перпендикулярно радиусу в сторону вращения тела, так как тело 3 вращается равноускоренно

Абсолютно твердое тело – тело взаимное расположение частей которого во время движения не меняется.

Поступательное движение твёрдого тела - это такое его движение, при котором любая прямая, жёстко связанная с телом, перемещается, оставаясь параллельной своему первоначальному направлению.

При поступательном движении твёрдого тела все его точки движутся одинаково за малое время dt, радиус-вектор этих точек изменяется на одну и ту же величину. Соответственно в каждый момент времени скорости всех его точек одинаковы и равны. Поэтому кинематика рассматриваемого поступательного движения твёрдого тела сводится к изучению движения любого из его точек. Обычно рассматривают движение центра инерции твёрдого тела, свободно двигающегося в пространстве.

Вращательное движение твёрдого тела - это такое движение, при котором все его точки движущиеся по окружностям, центры которых находятся вне пределов тела. Прямая называется осью вращения тела.

Угловая скорость – векторная величина, характеризующая быстроту вращения тела; отношение угла поворота ко времени, за которое этот поворот произошёл; вектор, определяемый первой производной угла поворота тела по времени. Вектор угловой скорости направлен вдоль оси вращения по правилу правого винта. ω=φ/t=2π/T=2πn, где T – период вращения, n – частота вращения. ω=lim Δt → 0 Δφ/Δt=dφ/dt.

Угловое ускорение – вектор, определяемый первой производной угловой скорости по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. Вторая производная угла поворота по времени. При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор ε сонаправлен вектору φ, при замедленном – противонаправлен ему. ε=dω/dt.

Если dω/dt> 0, то εω

Если dω/dt< 0, то ε ↓ω

4. Принцип инерции (первый закон Ньютона). Инерциальные системы отсчета. Принцип относительности.

Первый закон Ньютона (закон инерции) : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние

Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют законом инерции.



Первый закон Ньютона утверждает существование инерциальных систем отсчёта.

Инерциальная система отсчёта – это система отсчёта, относительно которой свободная материальная точка неподверженная воздействию других тел, движется равномерно прямолинейно; это такая система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы.

Принцип относительности - фундаментальный физический закон, согласно которому любой процесс протекает одинаково в изолированной материальной системе, находящейся в состоянии покоя, и в такой же системе в состоянии равномерного прямолинейного движения. Состояния движения или покоя определяются по отношению к произвольно выбранной инерциальной системе отсчета. Принцип относительности лежит в основе специальной теории относительности Эйнштейна.

5. Преобразования Галилея.

Принцип относительности (Галилея) : никакие опыты (механические, электрические, оптические), проведённые внутри данной инерциальной системы отсчёта, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчёта к другой.

Рассмотрим две системы отсчета: инерциальную систему К (с координатами x,y,z), которую условно будем считать неподвижной и систему К’ (с координатами x’,y’,z’), движущуюся относительно К равномерно и прямолинейно со скоростью U (U = const). Найдем связь между координатами произвольной точки А в обеих системах. r = r’+r0=r’+Ut. (1.)



Уравнение (1.) можно записать в проекциях на оси координат:

y=y’+Uyt; (2.)

z=z’+Uzt; Уравнение (1.) и (2.) носят название преобразований координат Галилея.

Связь между потенциальной энергией и силой

Каждой точке потенциального поля соответствует, с одной стороны, некоторое значение вектора силы , действующей на тело, и, с другой стороны, некоторое значение потенциальной энергии . Следовательно, между силой и потенциальной энергией должна существовать определенная связь.

Для установления этой связи вычислим элементарную работу , совершаемую силами поля при малом перемещении тела, происходящем вдоль произвольно выбранного направления в пространстве, которое обозначим буквой . Эта работа равна

где - проекция силы на направление .

Поскольку в данном случае работа совершается за счет запаса потенциальной энергии , она равна убыли потенциальной энергии на отрезке оси :

Из двух последних выражений получаем

Эта формула определяет проекции вектора силы на координатные оси. Если известны эти проекции, оказывается определенным и сам вектор силы:

в математике вектор ,

где а - скалярная функция х, у, z, называется градиентом этого скаляра обозначается символом . Следовательно сила равна градиенту потенциальной энергии, взятого с обратным знаком

Это движение, при котором все точки тела движутся по окружностям, центры которых лежат на оси вращения.

Положение тела задается двугранным углом (углом поворота).

 =  (t) - уравнение движения.

Кинематические характеристики те­ла:

- угловая скорость, с -1 ;

- угловое ускорение, с -2 .

Величины  и  можно представить в виде векторов
, расположенных на оси вращения, направление вектора таково, что с его конца враще­ние тела видно происходящим против часовой стрелки. Направление совпадает с , если >о.

Положение точки тела: M 0 M 1 = S = h.

Скорость точки
; при этом
.

откуда
;
;
.

Ускорение точки тела ,
‑ вращательное ускорение (в кинематике точки – касательное ‑):
- осестремительное ускорение (в кинематике точки - нор­мальное -).

Модули:
;
;

.

Равномерное и равнопеременное вращение

1. Равномерное:  = const,
;
;
- уравнение движения.

2. Равнопеременное:  = const,
;
;
;
;
- уравнение движения.

2). Механический привод состоит из шкива 1, ремня 2 и ступенчатых колес 3 и 4. Найти скорость рейки 5, а также ускорение точкиM в момент времени t 1 = 1с. Если угловая ско­рость шкива равна  1 = 0,2t , с -1 ; R 1 = 15; R 3 = 40; r 3 = 5; R 4 = 20; r 4 = 8 (в сантиметрах).

Скорость рейки

;

;
;
.

Откуда
;
;
, с -1 .

Из (1) и (2) получим , см.

Ускорение точки M .

, с -2 при t 1 = 1 с; a = 34,84 см/с 2 .

3.3 Плоскопараллельное (плоское) движение твердого тела

Это движение, при котором все точки тела движутся в плоскостях, параллельных некоторой неподвижной пло­скости.

Все точки тела на любой прямой, перпендикулярной неподвижной пло­скости, движутся одинаково. Поэтому анализ плоского движения тела сво­дится к исследованию движения пло­ской фигуры (сечение S) в ее плоскости (xy).

Это движение можно представить как совокупность поступательного движения вместе с некоторой произвольно выбранной точкой а, называемой полюсом , и вращательного движе­ния вокруг полюса.

Уравнения движения плоской фигуры

x а = x a (t); у а = у а; j = j(t)

Кинематические характеристи­ ки плоской фигуры:

- скорость и ускорение по­люса; w, e - угловая скорость и угловое ускорение (не зависят от выбора полюса).

Уравнения движения любой точки плоской фигуры (B) можно получить, проектируя векторное равенство
на осиx и у

x 1 B , y 1 B - координаты точки в системе координат, свя­занной с фигурой.

Определение скоростей точек

1). Аналитический способ .

Зная уравнения движения x n = x n (t); y n = y n (t), находим
;
;
.

2). Теорема о распределении скоростей.

Дифференцируя равенство
, получим
,

- скорость точки B при вращении пло­ской фигуры вокруг полюса A;
;

Формула распределения скоро­стей точек плоской фигуры
.

Скорость точкиM колеса, катящегося без скольжения

;
.

3). Теорема о проекциях ско­ростей.

Проекции скоростей двух то­чек тела на ось, проходящую че­рез эти точки, равны. Проектируя равенство
на осьx, имеем

Пример

Определить скорость натекания воды v Н на руль корабля, если извест­ны (скорость центра тяжести суд­на),b и b K (углы дрейфа).

Решение: .

4). Мгновенный центр скоростей (МЦС).

Скорости точек при плоском движении тела можно определять по формулам вращательного движения, используя понятие МЦС.

МЦС - точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю (v p = 0).

В общем случае МЦС - точка пере­сечения перпендикуляров к направле­ниям скоростей двух точек фигуры.

Принимая точку P за полюс, имеем для произвольной точки

, тогда

Откуда
- угловая скорость фигуры и
,т.е. скорости точек плоской фигуры пропор­циональны их расстояниям до МЦС.

Возможные случаи нахождения МЦС

Качение без скольжения


МЦС - в бес­конечности

Случай б соответствует мгновенно поступательному распределению скоростей.

1). Для заданного положения механизма найтиv B , v C ,v D , w 1 , w 2 , w 3 , если в данный момент v A = 20 см/с; BC = CD = 40 см; OC = 25 см; R = 20 см.

Решение МЦС катка 1 - точка P 1:

с -1 ;
см/с.

МЦС звена 2 - точка P 2 пересечения перпендикуляров к на­правлениям скоростей точек B и C:

с -1 ;
см/с;
см/с;
с -1 .

2). Груз Q поднимается с помощью ступенчатого бара­бана 1, угловая скорость которого w 1 = 1 с -1 ; R 1 = 3r 1 = 15 см; AE || BD. Найти скорость v C оси подвижного блока 2.

Находим скорости точек A и B:

v A = v E = w 1* R 1 = 15 см/с; v B = v D = w 1* r 1 = 5 см/с.

MЦС блока 2 - точка P. Тогда
, откуда
;
;
см/с.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!