Образовательный портал - Varnavinschool

Химическая кинетика и равновесие действующих масс. Задачи к разделу химическая кинетика и равновесие химической реакции

Цель:

решение экспериментальных задач, связанных с определением зависимости скорости химической реакции от концентрации реагирующих веществ, температуры, наличия катализатора и расчет условий химического равновесия в системах с обратимыми химическими реакциями.

Теоретические вопросы

1. Скорость гомо- и гетерогенной реакции.

2. Закон действия масс для скорости в гомогенной системе.

3. Константа скорости. Ее физический смысл.

4. Зависимость скорости реакции от температуры. Правило Вант-Гоффа.

5. Понятие катализа.

6. Обратимые и необратимые химические реакции.

7. Химическое равновесие. Константа равновесия. Ее физический смысл.

8. Смещение химического равновесия. Принцип Ле Шателье.

Химическая кинетика изучает протекание химических процессов во времени.

Скорость химической реакции n – это количество вещества Dn, реагирующего или образующегося в реакции в единицу времени Dt в единице объема реакционного пространства n

Гомогенная реакция – протекает во всем объеме, реагирующие вещества и продукты реакции находятся в одной фазе.

Количество вещества в единице объема Dn/V – это молярная концентрация С.

Тогда средняя скорость гомогенной реакции :

Единица измерения скорости гомогенной реакции моль л -1 с -1 .

Гетерогенная реакция – реакция протекает на границе раздела фаз, реагирующие вещества и (или) продукты реакции находятся в разных фазах.

Для гетерогенной реакции скорость зависит от площади поверхности соприкосновения реагентов – площади раздела фаз S.

Средняя скорость гетерогенной реакции

Единица измерения скорости гетерогенной реакции - моль м -2 с -1 .

Мгновенная скорость реакции – изменение концентрации в конкретный момент, т.е. за бесконечно малый отрезок времени dt



Скорость химической реакции всегда положительна. Знак плюс «+» или «–» указывает положительным или отрицательным является изменение количества вещества Δn, то есть образуется или расходуется вещество в ходе реакции.

Скорость реакции зависит от природы реагирующих веществ, их концентрации, температуры, наличие катализатора.

Закон действующих масс : Скорость гомогенной реакции пропорциональна произведению молярных концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам.

аА + bВ → сС + dD v = k[А] а [В] в, где k – константа скорости.

Скорость возрастает в большей степени при увеличении концентрации того из веществ, стехиометрический коэффициент которого в уравнении реакции больше.

Скорость реакции увеличивается с повышением температуры, поскольку увеличивается скорость молекул и, следовательно, число активных соударений, приводящих к взаимодействию. Зависимость скорости реакции от температуры выражается правилом Вант-Гоффа: v 2 = v 1 ∙γ (t 2 - t 1)/10 , где

v 1 – скорость реакции при начальной температуре t 1 ;

v 2 – скорость реакции при температуре t 2

γ – температурный коэффициент, его значение составляет 2 ÷ 4.

Скорость реакции возрастает при катализе – применении катализатора – вещества, ускоряющего реакцию, но не вступающего во взаимодействие. Катализатор не смещает химическое равновесие, а приводит к более быстрому его достижению, в равной степени ускоряя прямую и обратную реакции. Количество катализатора значительно меньше, чем реагентов. Различают катализ гомогенный (катализатор вещества находятся в одной фазе) и гетерогенный (в разных фазах).

Обратимые реакции – химические реакции, протекающие одновременно в прямом (®) и обратном () направлениях.

Химическое равновесие – состояние системы, в котором равны скорости прямой и обратной реакций, концентрации реагентов и продуктов реакции постоянны.

Константа равновесия – равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций реагентов в степени стехиометрических коэффициентов в уравнении и показывает во сколько раз скорость прямой реакции больше скорости обратной реакции.

aA + bB « сС + dD,

или для газов , где Р - парциальное давление.

Константа равновесия зависит от температуры, природы реагирующих веществ, не зависит от их концентрации. При К с >>1 реакция дает большой выход продуктов реакции, при K c <<1 выход продуктов мал, преобладают исходные реагенты.

Изменение хотя бы одного из параметров системы приводит к нарушению равновесия, изменению концентраций и установлению нового равновесия с другими равновесными значениями, т.е. смещению равновесия .

Правило Ле Шателье : если на систему, находящуюся в равновесии, оказать внешнее воздействие, то равновесие системы сместится в сторону той реакции, которая ослабляет это воздействие.

В опытах 1 и 2 мы будем изучать зависимость скорости разложения тиосульфата натрия разных концентраций и от температуры под действием кислоты H 2 SO 4 в гомогенной стадии реакции

Na 2 S 2 O 3 + H 2 SO 4 → Na 2 SO 4 + S + H 2 O + SO 2 .

При взаимодействии Na 2 S 2 O 3 и H 2 SO 4 моментально образуется неустойчивая тиосерная кислота H 2 S 2 O 3, которая в момент получения самопроизвольно разлагается с образованием сернистого газа SO 2 и свободной серы S.

Скорость всего процесса определяется скоростью этой самой медленной стадии: H 2 S 2 O 3 → H 2 SO 3 + S

Образующаяся сера плохо растворима в воде, поэтому процесс может быть разделен на две стадии:

гомогенную – сера находится в растворе, концентрация серы меньше насыщенной и

гетерогенную – сера выпадает в осадок, насыщенная концентрация превышена.

В момент достижения насыщенной концентрации серы (критическая точка смешения) в растворе появляется опалесценция – резкое усиление рассеяния света (прозрачный раствор начинает мутнеть).

Скорость гомогенной стадии реакции v =C м /Δτ, где

Δτ –время реакции от добавления 1 капли H 2 SO 4 до появления опалесценции.

C м – молярная концентрация Na 2 S 2 O 3.

В опыте 3 мы будем изучать влияние катализатора – сульфата меди CuSO 4 – на скорость восстановления роданида железа(III) Fe(SCN) 3 до роданида железа(II) Fe(SCN) 2 под действием тиосульфата натрия Na 2 S 2 O 3 .

2Fe(SCN) 3 + 2Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2Fe(SCN) 2 + 2NaSCN

Из всех веществ, принимающих участие в этой реакции, имеет окраску только Fe(SCN) 3. ,В растворе он окрашен в кроваво-красный цвет. Исчезновение окраски раствора свидетельствует об окончании реакции.

Роданид железа получим непосредственно перед опытом по реакции

В опыте 4 мы будем изучать смещение химического равновесия при изменении концентрации на примере обратимой реакции:

FeCl 3 + 3KSCN → Fe(SCN) 3 + 3KCl

Изменение концентрации роданида железа(III) Fe(SCN) 3 , имеющего красный цвет, приводит к изменению интенсивности окраски реакционной массы и позволяет судить в каком направлении смещается равновесие.

Практическое задание :

1. Написать выражение скорости реакции для реакций:

2NO(г) + Cl 2 (г) → 2NOCl(г)

CaCO 3 (к) → CaO(к) + CO 2 (г)

2. Как изменится скорость реакции 2NO(г) + O 2 (г) → 2NO 2 (г),

если уменьшить объем реакционного сосуда в 5 раз?

3. Определить исходные концентрации хлора и водорода, если равновесие в системе H 2 (г) + Cl 2 (г)→ 2HCl (г) установилось при =0,025моль/л, =0,09моль/л.

Как влияет на равновесие реакций: повышение давления и температуры?

2 H 2 (г) + O 2 (г) → 2H 2 O(г) , Q>0

C(к) + CO 2 (г) → 2CO(г), Q<0

4. Как повлияет понижение температуры на состояние химического равновесия в системе(не нарушится; сместится влево или в вправо)?: 2NO+O 2 →2NO 2 , ∆H<0.

5. Сместится ли равновесие при увеличении давления и в каком направлении (в сторону прямой или обратной реакции) в системе: 4Fe(к)+3O 2 (г)→2Fe 2 O 3 (к).

Химическая кинетика – это раздел химии, изучающий скорости химических реакций. Химические реакции могут протекать с различными скоростями (от малых долей секунды до десятилетий и более продолжительных временных интервалов). При рассмотрении вопроса о скорости реакций необходимо различать гомогенные и гетерогенные реакции. Гомогенные системы состоят из одной фазы (например, любая газовая смесь), а гетерогенные – из нескольких фаз (например, вода со льдом). Фазой является часть системы, отделённая от других её частей поверхностью раздела, при переходе через которую происходит скачкообразное изменение свойств.

Скорость гомогенной реакции – это количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени в единице объёма системы. Скоростью гетерогенной реакции является количество вещества, вступающего в реакцию или образующегося при реакции за единицу времени на единице поверхности фазы (или массы, объёма твердой фазы, когда затруднительно определение велечины поверхности твёрдого тела):

v гомог = ; v гетерог = . Т.е. скорость гомогенной реакции можно определить как изменение концентрации какого-либо из веществ, вступающих в реакцию или образующихся при реакции, протекающее за единицу времени .

Большинство химических реакций являются обратимыми, то есть могут протекать как в прямом, так и в обратном направлениях. Рассмотрим обратимую реакцию:

Скорости прямой и обратной реакций связаны с концентрациями реагентов следующими уравнениями:

v х.р, пр =k пр [A] a ×[B] b и v х.р. обр =k обр [C] c ×[D] d

С течением времени скорость прямой реакции будет уменьшаться вследствие расхода реагентов А и В и понижения их концентраций. Напротив, скорость обратной реакции по мере накопления продуктов С и D будет возрастать. Поэтому через некоторый промежуток времени скорости прямой и обратной реакций сравняются друг с другом. Установится состояние системы, в котором отсутствуют потоки вещества и энергии, называемое химическим равновесием. Все обратимые процессы протекают не полностью, а лишь до состояния равновесия, в котором из условия v х.р. пр = v х.р. обр следует:

k пр /k обр =[C] c ×[D] d / [A] a ×[B] b =K

где K - константа химического равновесия, которая зависит от температуры и природы реагентов, но не зависит от концентрации последних. Это математическое выражение закона действующих масс, который позволяет рассчитывать состав равновесной реакционной смеси.

Важнейшими факторами, влияющими на скорость реакции, являются:

1. Природа реагирующих веществ;

2. Концентрации реагирующих веществ;

3. Температурный фактор;

4. Наличие катализаторов.

В некоторых случаях скорость гетерогенных реакций зависит также от интенсивности движения жидкости или газа вблизи поверхности, на которой реализуется реакция.

1) Влияние концентрации реагирующих веществ. Представим уравнение химической реакции в общем виде: аА+bB+…=, тогда v х.р. =k[A] a [B] b – это, по сути, математическая запись закона действующих масс , открытого опытным путём К. Гульдбергом и П. Вааге в 1864-1867 гг. Согласно указанному закону, при неизменной температуре v х.р пропорциональна произведению концентраций реагирующих веществ, причём каждая концентрация входит в произведение в степени, равной коэффициенту, стоящему перед формулой данного вещества в уравнении реакции. Величина константы скорости реакции (k) зависит от природы реагирующих веществ, температуры и наличия катализаторов, но не зависит от концентрации веществ.

2) Зависимость v х.р. от температуры и от природы реагирующих веществ. Энергией активации Е а (в кДж/моль) называют избыточную энергию, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества. Е а различных реакций различна. Посредством этого фактора сказывается влияние природы реагирующих веществ на v х.р. . Если Е а <40 кДж/моль (т.е. мала), то скорость такой реакции велика (например, ионные реакции в растворах, протекающие практически мгновенно). Если Е а >120 кДж/моль (т.е. очень значительна), то скорость такой реакции незначительна (например, реакция синтеза аммиака N 2 +3H 2 =2NH 3 – скорость этой реакции при обычных Т вследствии высоких значений Е а настолько мала, что заметить её протекание практически невозможно).

В 1889 г. знаменитый шведский химик Аррениус вывел из опытных данных уравнение, связывающее константу скорости с температурой и энергией активации. Позднее это уравнение получило теоретическое обоснование. Согласно Аррениусу, константа скорости находится в экспоненциальной зависимости от температуры: k=k max ×exp(-E a /RT) , где R - универсальная газовая постоянная, равная 8,31 Дж/моль×К; k max - предэкспоненциальный фактор, имеющий смысл максимально возможного значения константы скорости при нулевой энергии активации или бесконечно высокой температуре, когда все столкновения молекул реагентов становятся активными. Уравнение Аррениуса используют чаще в логарифмической форме: lnk=lnk max -E a /RT .

Возрастание v х.р. с ростом температуры обычно характеризуют температурным коэффициентом скорости реакции – величиной, показывающей, во сколько раз возрастает скорость рассматриваемой реакции при повышении температуры системы на 10 градусов. Температурный коэффициент (g) для разных реакций различен. При обычных температурах его значение для большинства реакций лежит в пределах от 2 до 4 (т.е. g х.р. =2-4 раза).

Катализаторами являются вещества, не расходующиеся в реакции, но оказывающие влияние на её скорость. Явление изменения скорости реакции под действием катализаторов называется катализом , а сами эти реакции являются каталитическими . Действие катализатора обусловлено снижением активационного предела химического взаимодействия, т.е. снижением величины энергии активации. Под воздействием катализаторов реакции могут ускоряться в миллионы и более раз. Более того, некоторые реакции без катализаторов вообще не реализуются. Катализаторы широко используются в промышленности.

Различают гомогенный и гетерогенный катализ . При гомогенном катализе катализатор и реагенты образуют одну фазу (газ или раствор), а при гетерогенном катализе – катализатор находится в системе в виде самостоятельной фазы. Примером гомогенного катализа служит разложение перекиси водорода на воду и кислород в присутствии катализаторов Cr 2 O 7 2- , WO 4 2- и др. Примером гетерогенного катализа является окисление диоксида серы в триоксид при контактном способе получения серной кислоты из отходящих газов металлургических производств: SO 2 +0,5O 2 +H 2 O=(kt)=H 2 SO 4 .

Задача 1. Дайте определение понятию скорость химической реакции. Опишите количественно (где это можно), как влия­ют на скорость реакции внешние условия (концентрация, тем­пература, давление). Рассчитайте, во сколько раз изменится скорость реакции Н 2 +С1 2 = 2НС1 при увеличении давления в 2 раза;

Решение.

Скоростью химической реакции u называют число элементарных актов взаимодействия, в единицу времени, в единице объема для гомогенных реакций или на единице поверхности раздела фаз для гетерогенных реакций. Среднюю выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t. Концентрацию выражают в моль/л, а время в минутах, секундах или часах.

υ = ± dC/dt,

где C – концентрация, моль/л

Единица измерения скорости реакции моль/л·с

Если в некоторые моменты времени t 1 и t 2 концентрации одного из исходных веществ равна с 1 и с 2 , то за промежуток времени Δt = t 2 – t 1 , Δc = c 2 – c 1

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, присутствия катализаторов, давления (с участием газов), среды (в растворах), интенсивности света (фотохимические реакции).

Зависимость скорости реакции от природы реагирующих веществ . Каждому химическому процессу присуще определенное значение энергии активации Е а. Причем, скорость реакции. тем больше, чем меньше энергия активации.

Скорость зависит от прочности химических связей в исходных веществах. Если эти связи прочные, то Е а велика, например N 2 + 3H 2 = 2NH 3 , то скорость взаимодействия мала. Если Е а равна нулю, то реакция протекает практически мгновенно, например:

HCl (раствор) + NaOH (раствор) = NaCl (раствор) + H 2 O.

Решение.

Fe 2 O 3 (т) + 3CO (г) = 2Fe (т) + 3CO 2 (г)

3 моля СО 2 образуется, если в реакцию вступают 3 моля СО,

2 молей СО 2 — х

х = 2 моль, ⇒ исходная концентрация исх = pавн + 2 моль = 1 + 2 = 3 моль.

Задача 3.Температурный коэффициент реакции равен 2,5. Как изменится ее скорость при охлаждении реакционной смеси от изменения температуры от 50 °С до 30 °С?

Задача 4. Рассчитайте скорость реакции между растворами хлорида калия и нитрата серебра, концентрации которых составляют соответственно 0,2 и 0,3 моль/л, а k=1,5∙10 -3 л∙моль -1 ∙с -1

Решение.

AgNO 3 + KCl = AgCl↓ + K NO 3

v = k··

v = 1,5∙10 -3 · 0,2 · 0,3 = 9·10 -5 моль/л·с

Таким образом скорость реакции равна v = 9·10 -5 моль/л·с

Задача 5. Как следует изменить концентрацию кислорода, чтобы скорость гомогенной элементарной реакции: 2 NО (г) +O 2(г) → 2 NО 2(г) не изменилась при уменьшении концентрации оксида азота (II) в 2 раза?

Решение .

2 NО (г) +O 2(г) → 2 NО 2(г)

Скорость прямой реакции равна:

υ 1 = k· 2 ·

При уменьшении концентрации NО в 2 раза скорость прямой реакции станет равной:

υ 2 = k· 2 · = 1/4·k· 2 ·

т.е. скорость реакции уменьшится в 4 раза:

υ 2 /υ 1 = 1/4·k· 2 · / k· 2 · = 4

Чтобы скорость реакции не изменилась концентрацию кислорода надо увеличить в 4 раза.

При условии, что υ 1 = υ 2

1/4·k· 2 ·х = k· 2 ·

Задача 6. При увеличении температуры с 30 до 45 о С скорость гомогенной реакции повысилась в 20 раз. Чему равна энергия активации реакции?
Решение.
Применяя , получим:
ln 20 = E a /8,31 · (1/303 – 1/318),
отсюда

E a = 160250 Дж = 160,25 кДж

Задача 7. Константа скорости реакции омыления уксусноэтилового эфира: СН 3 СООС 2 Н 5(р-р) + КОН (р-р) →СН 3 СООК (р-р) +С 2 Н 5 ОН (р-р) равна 0,1 л/моль∙мин. Начальная концентрация уксусноэтилового эфира была равна 0,01 моль/л, а щелочи – 0,05 моль/л. Вычислите начальную скорость реакции и в тот момент, когда концентрация эфира станет равной 0,008 моль/л.

Решение.

СН 3 СООС 2 Н 5(р-р) + КОН (р-р) →СН 3 СООК (р-р) +С 2 Н 5 ОН (р-р)

Скорость прямой реакции равна:

υ нач = k·[СН 3 СООС 2 Н 5 ]·[КОН]

υ нач = 0,1·0,01·0,05 = 5·10 -5 моль/л·мин

В тот момент, когда концентрация эфира станет равной 0,008 моль/л, его расход составит

[СН 3 СООС 2 Н 5 ] расход = 0,01 – 0,008 = 0,002 моль/л

Значит, в этот момент щелочи также израсходовалось [КОН] расход = 0,002 моль/л и ее концентрация станет равной

[КОН] кон = 0,05 – 0,002 = 0,048 моль/л

Вычислим скорость реакции в тот момент, когда концентрация эфира станет равной 0,008 моль/л, а щелочи 0,048 моль/л

υ кон = 0,1·0,008·0,048 = 3,84·10 -5 моль/л·мин

Задача 8. Как следует изменить объем реакционной смеси системы:
8NH 3(г) + 3Br 2(ж) →6NH 4 Br (к) + N 2(г) , чтобы скорость реакции уменьшилась в 60 раз?

Решение.

Чтобы уменьшить скорость реакции необходимо увеличить объем системы, т.е. уменьшить давление и, тем самым, уменьшить концентрацию газообразного компонента — NH 3 . Концентрация Br 2 при этом останется постоянной.

Начальная скорость прямой реакции была равна:

υ 1 = k· 8 ·

при увеличении концентрации аммиака скорость прямой реакции стала равной:

υ 2 = k· 8 · = k·x 8 · 8 ·

υ 2/ υ 1 = k·x 8 · 8 ·/k· 8 · = 60

После сокращения всех постоянных, получаем

Таким образом, чтобы уменьшить скорость реакции в 60 раз, надо увеличить объем в 1,66 раз.

Задача 9. Как повлияет на выход хлора в системе:
4HCl (г) +O 2(г) ↔2Cl 2(г) + 2H 2 О (ж) ; ΔН о 298 =−202,4кДж
а) повышение температуры; b) уменьшение общего объема смеси; c) уменьшение концентрации кислорода; d) введение катализатора?

Решение.

4HCl (г) +O 2(г) ↔2Cl 2(г) + 2H 2 О (ж) ; ΔН о 298 =−202,4кДж

  1. ΔН о 298 ˂ 0, следовательно, реакция экзотермическая, поэтому, согласно принципу Ле-Шателье, при повышении температуры равновесие сместится в сторону образования исходных веществ (влево), т.е. выход хлора уменьшится.
  2. При уменьшении давления, равновесие смещается в сторону реакции, идущей с увеличением числа молекул газообразных веществ. В данном случае в равновесие смещается сторону образования исходных веществ (влево), т.е. выход хлора также уменьшится.
  3. Уменьшение концентрации кислорода также будет способствовать смещению равновесия влево и уменьшению выхода хлора.
  4. Внесение катализатора в систему приводит к увеличению скорости как прямой, так и обратной реакций. При этом, изменяется скорость достижения состояния равновесия, но при этом константа равновесия не меняется и смещения равновесия не происходит. Выход хлора останется неизменным.

Задача 10. В системе: PCl 5 ↔ PCl 3 + Cl 2
равновесие при 500 о С установилось, когда исходная концентрация PCl 5 , равная 1 моль/л, уменьшилась до 0,46 моль/л. Найдите значение константы равновесия при указанной температуре.

Решение.

PCl 5 ↔ PCl 3 + Cl 2

Запишем выражение для константы равновесия:

К = · ̸

Найдем количество PCl 5, которое расходуется на образование PCl 3 и Cl 2 и их равновесные концентрации.

Расход = 1 – 0,46 = 0,54 моль/л

Из уравнения реакции:

Из 1 моль PCl 5 образуется 1 моль PCl 3

Из 0,54 моль PCl 5 образуется x моль PCl 3

x = 0,54 моль

Аналогично, из 1 моль PCl 5 образуется 1 моль Cl 2

из 0,54 моль PCl 5 образуется у моль Cl 2

у = 0,54 моль

К = 0,54·0,54/0,46 = 0,63.

Задача 11. Константа равновесия реакции: СОСl 2(г) ↔ СО (г) +С1 2(г) равна 0,02. Исходная концентрация СОCl 2 составила 1,3 моль/л. Рассчитайте равновесную концентрацию Сl 2 . Какую исходную концентрацию СОCl 2 следует взять, чтобы увеличить выход хлора в 3 раза?

Решение.

СОСl 2(г) ↔ СО (г) +С1 2(г)

Запишем выражение для константы равновесия :

К = [СО]· ̸ [СОСl 2 ]

Пусть [СО] равн = равн = х, тогда

[СОСl 2 ] равн = 1,3 – х

Подставим значения в выражение для константы равновесия

0,02 = х·х/(1,3 — х)

Преобразим выражение в квадратное уравнение

х 2 + 0,02х – 0,026 = 0

Решая уравнение, находим

Значит, [СО] равн = равн = 0,15 моль/л

Увеличив выход хлора в 3 раза получим:

Равн = 3·0,15 = 0,45 моль/л

Исходная концентрация [СОСl 2 ] исх2 при этом значении Cl 2 равна:

[СОСl 2 ] равн2 = 0,45·0,45/0,02 = 10,125 моль/л

[СОСl 2 ] исх2 = 10,125 + 0,45 = 10,575 моль/л

Таким образом, чтобы увеличить выход хлора в 3 раза, исходная концентрация СОCl 2 должна быть равна [СОСl 2 ] исх2 = 10,575 моль/л

Задача 12. Равновесие в системе H 2(г) + I 2(г) ↔ 2HI (г) установилось при следующих концентрациях участников реакции: HI – 0,05 моль/л, водорода и иода – по 0,01 моль/л. Как изменятся концентрации водорода и иода при повышении концентрации HI до 0,08 моль/л?

Решение.

H 2(г) + I 2(г) ↔ 2HI (г)

Найдем значение константы равновесия данной реакции:

К = 2 ̸ ·

К = 0,05 2 ̸ 0,01 · 0,01 = 25

При увеличении концентрации HI до 0,08 моль/л, равновесие сместится в сторону образования исходных веществ.

Из уравнения реакции видно, что образуется 2 моль HI, 1 моль H 2 и 1 моль I 2.

Обозначим новые равновесные концентрации через неизвестную х.

Равн2 = 0,08 — 2х равн2 = равн2 = 0,01 + х

Найдем х с помощью выражения для константы равновесия:

К = ( 0,08 — 2х) 2 ̸ [(0,01 + х) · (0,01 + х)] = 25

Решая уравнения находим:

Равн2 = равн2 = 0,01 + 0,004 = 0,0014 моль/л

Задача 13. Для реакции: FeO (к) + CO (г) ↔Fe (к) + CO 2(г) константа равновесия при 1000 о С равна 0,5. Начальные концентрации СО и СО 2 были соответственно равны 0,05 и 0,01 моль/л. Найдите их равновесные концентрации.

Решение.

FeO (к) + CO (г) ↔Fe (к) + CO 2(г)

Запишем выражение для константы равновесия :

К = [СО 2 ] ̸ [СО]

Пусть равновесные концентрации равны:

[СО] равн = (0,05 – х) моль/л [СО 2 ] равн = (0,01 + х) моль/л

Подставим значения в выражение для константы равновесия:

К = (0,01 + х)/(0,05 – х) = 0,5

Решая уравнение, найдем х:

[СО] равн = 0,05 – 0,01 = 0,04 моль/л [СО 2 ] равн = 0,01 + 0,01 = 0,02 моль/л

Категории ,

Г лава 6

Химическая кинетика. Химическое равновесие.

6.1.Химическая кинетика .

Химическая кинетика - раздел химии, изучающий скорости и механизмы химических процессов, а также их зависимость от различных факторов.

Изучение кинетики химических реакций позволяет как определять механизмы химических процессов, так и управлять химическими процессами при их практической реализации.

Любой химический процесс представляет собой превращение реагентов в продукты реакции:

реагенты→ переходное состояние→ продукты реакции.

Реагенты (исходные вещества) – вещества, вступающие в процесс химического взаимодействия.

Продукты реакции – вещества, образующиеся в конце процесса химического превращения. В обратимых процессах продукты прямой реакции являются реагентами обратной реакции.

Необратимые реакции – реакции, протекающие при данных условиях практически в одном направлении (обозначают знаком →).

Например:

CaCO 3 → CaO + CO 2

Обратимые реакции – реакции, протекающие одновременно в двух противоположных направлениях (обозначают знаком).

Переходное состояние (активированный комплекс) – это состояние химической системы, являющееся промежуточным между исходными веществами (реагентами) и продуктами реакции. В этом состоянии происходит разрыв старых химических связей и образования новых химических связей. Далее активированный комплекс превращается в продукты реакции.

Большинство химических реакций являются сложными и состоят из нескольких стадий, называемых элементарными реакциями .

Элементарная реакция – единичный акт образования или разрыва химической связи. Совокупность элементарных реакций, из которых складывается химическая реакция, определяет механизм химической реакции.

В уравнении химической реакции обычно указывается начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции). В то же время фактический механизм химической реакции может быть достаточно сложным и включать в себя целый ряд элементарных реакций. К сложным химическим реакциям относятся обратимые, параллельные, последовательные и другие многостадийные реакции (цепные реакции , сопряженные реакции и пр.).

Если скорости различных стадий химической реакции существенно различаются, то скорость сложной реакции в целом определяется скоростью самой медленной ее стадии. Такую стадию (элементарную реакцию) называют лимитирующей стадией .

В зависимости от фазового состояния реагирующих веществ, различают два типа химических реакций: гомогенные и гетерогенные .

Фазой называется часть системы, отличающаяся по своим физическим и химическим свойствам от других частей системы и отделенная от них поверхностью раздела. Системы, состоящие из одной фазы, называются гомогенными системами , из нескольких фаз – гетерогенными . Примером гомогенной системы может быть воздух, представляющий собой смесь веществ (азот, кислород и др.), находящихся в одинаковой газовой фазе. Суспензия мела (твердого вещества) в воде (жидкость) является примером гетерогенной системы, состоящей из двух фаз.

Соответственно, реакции, в которых взаимодействующие вещества находятся в одной фазе, называются гомогенными реакциями . Взаимодействие веществ в таких реакциях происходит по всему объёму реакционного пространства.

К гетерогенным реакциям относят реакции, протекающие на границе раздела фаз. Примером гетерогенной реакции может служить реакция цинка (твердая фаза) с раствором соляной кислоты (жидкая фаза). В гетерогенной системе реакция всегда происходит на поверхности раздела двух фаз, так как только здесь реагирующие вещества, находящиеся в разных фазах, могут сталкиваться между собой.

Химические реакции принято различать по их молекулярности , т.е. по числу молекул, участвующих в каждом элементарном акте взаимодействия . По этому признаку различают реакции мономолекулярные, бимолекулярные и тримолекулярные.

Мономолекулярными называются реакции, в которых элементарный акт представляет собой химическое превращение одной молекулы , например:

Бимолекулярными считаются реакции, элементарный акт в которых осуществляется при столкновении двух молекул, например:

В тримолекулярных реакциях элементарный акт осуществляется при одновременном столкновении трех молекул, например:

Столкновение более чем трех молекул одновременно практически невероятно, поэтому реакции большей молекулярности на практике не встречаются.

Скорости химических реакций могут существенно отличаться. Химические реакции могут протекать крайне медленно, в течение целых геологических периодов, как, например, выветривание горных пород, которое представляет собой превращения алюмосиликатов:

K 2 O · Al 2 O 3 · 6SiO 2 + CO 2 + 2H 2 O → K 2 CO 3 + 4SiO 2 + Al 2 O 3 · 2SiO 2 · 2H 2 O.

ортоклаз – полевой шпат поташ кварц. песок каолинит (глина)

Некоторые реакции протекают практически мгновенно, например, взрыв черного пороха, представляющего собой смесь угля, серы и селитры:

3C + S + 2KNO 3 = N 2 + 3CO 2 + K 2 S.

Скорость химической реакции служит количественной мерой интенсивности ее протекания.

В общем случае под скоростью химической реакции понимают число элементарных актов реакции, происходящих в единицу времени в единице реакционного пространства.

Так как для гомогенных процессов реакционным пространством является объем реакционного сосуда, то

для гомогенных реакций скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени в единице объема.

Учитывая, что количество вещества, содержащееся в определенном объеме, характеризует концентрацию вещества, то

скорость реакции – это величина, показывающая изменение молярной концентрации одного из веществ в единицу времени.

Если при неизменных объеме и температуре концентрация одного из реагирующих веществ уменьшилась от с 1 до с 2 за промежуток времени от t 1 до t 2 , то, в соответствии с определением, скорость реакции за данный промежуток времени (средняя скорость реакции) равна:

Обычно для гомогенных реакций размерность скорости V [моль/л·с].

Так как для гетерогенных реакций реакционным пространством является поверхность , на которой протекает реакция, то для гетерогенных химических реакций скорость реакции относится к единице площади поверхности, на которой протекает реакция. Соответственно, средняя скорость гетерогенной реакции имеет вид:

где S – площадь поверхности, на которой протекает реакция.

Размерность скорости для гетерогенных реакций – [моль/л·с·м 2 ].

Скорость химической реакции зависит от целого ряда факторов:

природы реагирующих веществ;

концентрации реагирующих веществ;

давления (для газовых систем);

температуры системы;

площади поверхности (для гетерогенных систем);

наличия в системе катализатора и других факторов.

Так как каждое химическое взаимодействие является результатом столкновения частиц, то увеличение концентрации (числа частиц в заданном объеме) приводит к более частым их столкновениям, и как следствие, к увеличению скорости реакции. Зависимость скорости химических реакций от молярных концентраций реагирующих веществ описывается основным законом химической кинетики – законом действующих масс , который был сформулирован в 1865 году Н.Н.Бекетовым и в 1867 году К.М.Гульдбергом и П. Вааге .

Закон действующих масс гласит: скорость элементарной химической реакции при постоянной температуре прямо пропорциональна произведению молярных концентраций реагирующих веществ в степенях, равных их стехиоме-трическим коэффициентам.

Уравнение, выражающее зависимость скорости реакции от концентрации каждого вещества, называют кинетическим уравнением реакции .

Следует отметить, что закон действующих масс в полной мере применим лишь только к простейшим гомогенным реакциям. Если реакция протекает в несколько стадий, то закон справедлив для каждой из стадий, а скорость сложного химического процесса определяется скоростью наиболее медленно протекающей реакции, являющейся лимитирующей стадией всего процесса .

В общем случае, если в элементарную реакцию вступают одновременно т молекул вещества А и n молекул вещества В :

m А + n В = С ,

то уравнение для скорости реакции (кинетическое уравнение) имеет вид:

где k – коэффициент пропорциональности, который называется константой скорости химической реакции; [А А ; [B ] – молярная концентрация вещества B ; m и n – стехиометрические коэффициенты в уравнении реакции.

Чтобы понять физический смысл константы скорости реакции , надо принять в написанных выше уравнениях концентрации реагирующих веществ [А ] = 1 моль/л и [В ] = 1 моль/л (либо приравнять единице их произведение), и тогда:

Отсюда ясно, что константа скорости реакции k численно равна скорости реакции, в которой концентрации реагирующих веществ (или их произведение в кинетических уравнениях) равны единице .

Константа скорости реакции k зависит от природы реагирующих веществ и температуры, но не зависит от значения концентрации реагентов.

Для гетерогенных реакций концентрация твердой фазы в выражение для скорости химической реакции не включается.

Например, в реакции синтеза метана:

Если реакция протекает в газовой фазе, то существенное влияние на ее скорость оказывает изменение давления в системе, так как изменение давления в газовой фазе приводит к пропорциональному изменению концентрации. Так, увеличение давления приводит к пропорциональному росту концентрации, а уменьшение давления, соответственно, снижает концентрацию газообразного реагирующего вещества.

Изменение давления практически не влияет на концентрацию жидких и твердых веществ (конденсированное состояние вещества) и не оказывает влияния на скорость реакций, протекающих в жидкой или твердой фазах.

Химические реакции осуществляется за счет соударения частиц реагирующих веществ. Однако, далеко не всякое столкновение частиц реагентов является эффективным , т.е. ведет к образованию продуктов реакции. Только частицы, обладающие повышенной энергией – активные частицы , способны осуществить акт химической реакции. С повышением температуры увеличивается кинетическая энергия частиц и увеличивается число активных, следовательно, возрастает скорость химических процессов.

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа: при повышении температуры на каждые 10 0 С скорость химической реакции возрастает в два – четыре раза.

V 1 – скорость реакции при начальной температуре системы t 1 , V 2 – скорость реакции при конечной температуре системы t 2 ,

γ – температурный коэффициент реакции (коэффициент Вант-Гоффа), равный 2÷4.

Знание величины температурного коэффициента γ дает возможность рассчитать изменение скорости реакции при увеличении температуры от Т 1 до Т 2 . В этом случае можно использовать формулу:

Очевидно, что при повышении температуры в арифметической прогрессии скорость реакции возрастает в геометрической прогрессии. Влияние температуры на скорость реакции тем значительнее, чем больше значение температурного коэффициента реакции g.

Следует заметить, что правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния небольших изменений температуры на скорость реакции.

Энергия, необходимая для протекания реакций, может быть обеспечена различными воздействиями (теплота, свет, электрический ток, лазерное излучение, плазма, радиоактивное излучение, высокое давление и т.д.).

Реакции могут подразделяться на тепловые, фотохимические, электрохимические, радиационно-химические и др. При всех этих воздействиях растет доля активных молекул, которые имеют энергию, равную или большую минимально необходимой для данного взаимодействия энергии Е мин .

При столкновении активных молекул вначале образуется так называемый активированный комплекс , внутри которого и происходит перераспределение атомов.

Энергия, необходимая для увеличения средней энергии молекул реагирующих веществ до энергии активированного комплекса, называется энергией активации Еа.

Энергию активации можно рассматривать как некую дополнительную энергию, которую должны приобрести молекулы реагентов, чтобы преодолеть определенный энергетический барьер . Таким образом, Е а ра вна разности между средней энергией реагирующих частиц E исх и энергией активированного комплекса E мин. Энергия активации определяется природой реагентов. Значение Е а колеблется в пределах от 0 до 400 кДж. Если значение Е а превышает 150 кДж, то такие реакции при температурах, близких к стандартной, практически не протекают.

Изменение энергии системы в ходе реакции может быть графически представлено с помощью следующей энергетической диаграммы (рис. 6.1).

Путь реакции

Рис. 6.1. Энергетическая диаграмма экзотермической реакции:

E исх – средняя энергия исходных веществ; E прод – средняя энергия продуктов реакции; E мин – энергия активированного комплекса; E акт – энергия активации; ΔH р – тепловой эффект химической реакции

Из энергетической диаграммы видно, что разность между величинами энергии продуктов реакции и энергии исходных веществ, будет представлять из себя тепловой эффект реакции.

Е прод. – Е исх. = ΔН р.

Согласно уравнению Аррениуса, чем больше значение энергии активации E акт, тем в большей степени константа скорости химической реакции k зависит от температуры:

Е - энергия активации (Дж/моль),

R - универсальная газовая постоянная,

T – температура в К,

А - константа Аррениуса,

e = 2,718 – основание натуральных логарифмов.

Катализаторы - это вещества, которые повышают скорость химической реакции. Они вступают во взаимодействие с реагентами с образованием промежуточного химического соединения и освобождаются в конце реакции. Влияние, оказываемое катализаторами на химические реакции, называется катализом.

Например, смесь порошка алюминия и кристаллического йода при комнатной температуре не обнаруживает заметных признаков взаимодействия, но достаточно капли воды, чтобы вызвать бурную реакцию:

Различают гомогенный катализ (катализатор образует с реагирующими веществами гомогенную систему, например, газовую смесь) и гетерогенный катализ (катализатор и реагирующие вещества находятся в разных фазах и каталитический процесс идет на поверхности раздела фаз).

Для объяснения механизма гомогенного катализа наибольшее распространение получила теория промежуточных соединений (предложена французским исследователем Сабатье и развита в работах русского ученого Н.Д. Зелинского). Согласно этой теории медленно протекающий процесс, например, реакция:

в присутствии катализатора протекает быстро, но в две стадии. В первой стадии процесса образуется промежуточное соединение одного из реагентов с катализатором A… kat .

Первая стадия:

A + kat = A.∙. kat.

Полученное соединение на второй стадии образует с другим реагентом активированный комплекс [A.∙.kat.∙.B ], который превращается в конечный продукт AB с регенерацией катализатора kat .

Вторая стадия:

A.∙.kat + B = = AB + kat.

Промежуточное взаимодействие катализатора с реагентами, направляет процесс на новый путь, характеризующийся более низким энергетическим барьером. Таким образом, механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений.

Примером может служить медленно протекающая реакция:

2SO 2 + O 2 = 2SO 3 медленно .

При промышленном нитрозном способе получения серной кислоты в качестве катализатора используется оксид азота (II), что значительно ускоряет реакцию:

Широко используется гетерогенный катализ в процессах нефтепереработки. Катализаторами служат платина, никель, оксид алюминия и др. Гидрирование растительного масла протекает на никелевом катализаторе (никель на кизельгуре) и т.д.

Примером гетерогенного катализа является окисление SO 2 в SO 3 на катализаторе V 2 O 5 при производстве серной кислоты контактным методом.

Вещества, повышающие активность катализатора называют промоторами (или активаторами). При этом, промоторы могут сами и не обладать каталитическими свойствами.

Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы фосфора и мышьяка вызывают быструю потерю катализатором V 2 O 5 активности в реакции окисления SO 2 в SO 3 .

Многие важнейшие химические производства, такие как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов.

Биохимические реакции в растительных и животных организмах ускоряются биохимическими катализаторами ферментами .

Резко замедлить протекание нежелательных химических процессов можно при добавлении в реакционную среду специальных веществ - ингибиторов . Например, для торможения нежелательных процессов коррозионного разрушения металлов широко используются различные ингибиторы коррозии металлов .

6.1.1. Вопросы для самоконтроля знаний теории

по теме « Химическая кинетика»

1. Что изучает химическая кинетика?

2. Что принято понимать под термином « реагенты»?

3. Что принято понимать под термином « продукты реакции»?

4. Как обозначаются в химических реакциях обратимые процессы?

5. Что принято понимать под термином « активированный комплекс»?

6. Что представляет из себя элементарная реакция?

7. Какие реакции считаются сложными?

8. Какую стадию реакций называют лимитирующей стадией?

9. Дайте определение понятию «фаза»?

10. Какие системы считаются гомогенными?

11. Какие системы считаются гетерогенными?

12. Приведите примеры гомогенных систем.

13. Приведите примеры гетерогенных систем.

14. Что считают «молекулярностью» реакции?

15. Что понимают под термином «скорость химической реакции»?

16. Приведите примеры быстрых и медленных реакций.

17. Что понимают под термином «скорость гомогенной химической реакции»?

18. Что понимают под термином «скорость гетерогенной химической реакции»?

19. От каких факторов зависит скорость химической реакции?

20. Сформулируйте основной закон химической кинетики.

21. Что представляет из себя константа скорости химических реакций?

22.От каких факторов зависит константа скорости химических реакций?

23. Концентрации каких веществ не включается в кинетическое уравнение химических реакций?

24. Как зависит скорость химической реакции от давления?

25. Как зависит скорость химической реакции от температуры?

26. Как формулируется «Правило Вант-Гоффа»?

27. Что представляет из себя «температурный коэффициент химической реакции»?

28. Дайте определение понятию «энергия активации».

29. Дайте определение понятию «катализатор химической реакции»?

30. Что представляет из себя гомогенный катализ?

31. Что представляет из себя гетерогенный катализ?

32. Как объясняется механизм действия катализатора при гомогенном катализе?

33. Приведите примеры каталитических реакций.

34. Что такое ферменты?

35. Что такое промоторы?

6.1.2. Примеры решения типовых задач

по теме «Химическая кинетика»

Пример 1 . От площади поверхности соприкосновения реагирующих веществ зависит скорость реакции:

1) серной кислоты с раствором хлорида бария,

2) горения водорода в хлоре,

3) серной кислоты с раствором гидроксида калия,

4) горения железа в кислороде.

От площади поверхности соприкосновения реагирующих веществ зависит скорость гетерогенных реакций. Среди приведенных реакций гетерогенной реакцией, т.е. характеризующейся наличием разных фаз, является реакция горения железа (твердая фаза) в кислороде (газовая фаза).

Ответ. 3.

Пример 2. Как изменится скорость реакции

2Н 2(г) + О 2(Г) = 2Н 2 О (г)

при увеличении концентрации исходных веществ в два раза?

Запишем кинетическое уравнение реакции, устанавливающее зависимость скорости реакции от концентрации реагирующих веществ:

V 1 = k [Н 2 ] 2 · [О 2 ].

Если концентрации исходных веществ увеличить в 2 раза, кинетическое уравнение примет вид:

V 2 = k (2 [Н 2 ]) 2 · 2 [О 2 ] = 8 k [Н 2 ] 2 · [О 2 ], т.е.

При увеличении концентрации исходных веществ в два раза скорость данной реакции возросла в 8 раз.

Ответ. 8.

Пример 3. Как изменится скорость реакции, если общее давление в системе СН 4(Г) + 2О 2(Г) = СО 2(Г) + 2Н 2 О (Г) , уменьшить в 5 раз?

В соответствии с кинетическим уравнением реакции, скорость этой реакции будет определяться:

V 1 = k [СН 4 ] · [О 2 ] 2 .

При уменьшении давления в пять раз концентрация каждого из газообразных веществ уменьшится также в пять раз. Кинетическое уравнение реакции в этих условиях будет следующим:

можно определить, что скорость реакции уменьшилась в 125 раз.

Ответ. 125.

Пример 4. Как изменится скорость реакции, характеризующейся температурным коэффициентом реакции, равным 3, если температура в системе повысилась с 20 до 60°С?

Решение. В соответствии с правилом Вант-Гоффа

При повышении температуры на 40 0 С скорость данной реакции возросла в 81 раз

Ответ. 81.

6.1.3. Вопросы и упражнения для самоподготовки

Скорость химических реакций

1. В зависимости от физического состояния реагирующих веществ химические реакции подразделяют на:

1) экзотермические и эндотермические,

2) обратимые и необратимые,

3) каталитические и некаталитические,

4) гомогенные и гетерогенные.

2. Укажите номер или сумму условных номеров, под которыми приведены гомогенные реакции:

3. Укажите номер или сумму условных номеров, под которыми приведены выражения, с помощью которых можно вычислить скорость гомогенной реакции:

4. Единицей измерения скорости гомогенной реакции может быть:

1) моль/л·с,

3) моль/л·,

4) л/моль·с.

5. Укажите номер или сумму условных номеров, под которыми приведены справедливые выражения. В ходе гомогенной реакции

А + 2B ® 2C + D :

1) концентрации А и В убывают,

2) концентрация С возрастает быстрее, чем концентрация D ,

4) концентрация В убывает быстрее, чем концентрация А ,

8) скорость реакции остается постоянной.

6. Под каким номером показана линия, верно отражающая изменение во времени концентрации образующегося в реакции вещества:

7. Изменение во времени концентрации исходного вещества в реакции, протекающей до конца, верно описывает кривая:

9. Укажите номер или сумму условных номеров, под которыми приведены реакции, скорость которых не зависит от того, по какому веществу ее вычисляют?

10. Укажите номер или сумму условных номеров, под которыми приведены факторы, влияющие на скорость реакции:

1) природа реагирующих веществ,

2) концентрация реагирующих веществ,

4) температура реакционной системы,

8) присутствие катализатора в реакционной системе.

11. Основной закон химической кинетики устанавливает зависимость скорости реакции от:

1) температуры реагирующих веществ,

2) концентрации реагирующих веществ,

3) природы реагирующих веществ,

4) времени протекания реакции.

12. Укажите номер или сумму условных номеров, под которыми приведены верные высказывания. Химическая кинетика:

1) раздел физики,

2) изучает скорость химической реакции,

4) использует закон действующих масс,

8) изучает зависимость скорости реакций от условий их протекания.

13. Я.Х. Вант-Гофф:

1) первый лауреат Нобелевской премии по химии,

2) изучал зависимость скорости реакции от температуры,

4) изучал зависимость скорости реакции от концентрации веществ,

8) сформулировал закон действующих масс.

14. В одинаковых условиях быстрее протекает реакция:

1) Ca + H 2 O ®

3) Mg + H 2 O ®

4) Zn + H 2 O ®

15. Скорость выделения водорода наибольшая в реакции:

1) Zn + HCl (5-процентный р–р) ®

2) Zn + НСl (10-процентный р–р) ®

3) Zn + HCl (15-процентный р–р) ®

4) Zn + HCl (30-процентный р–р) ®

16. Концентрация реагирующего вещества не влияет на скорость реакции, если это вещество в реакцию взято в:

1) твердом состоянии,

2) газообразном состоянии,

3) растворенном состоянии.

17. Вычислите среднюю скорость реакции A + B = C (моль/л×с), если известно, что исходная концентрация А составляла 0,8 моль/л, а через 10 секунд стала 0,6 моль/л.

1) 0,2, 2) 0,01, 3) 0,1, 4) 0,02.

18. На сколько моль/л уменьшились концентрации веществ A и B в реакции A + 2B ® 3C , если известно, что за это же время концентрация С увеличилась на 4,5 моль/л?

DС А DС B

19. Вычислите среднюю скорость реакции 2CO + O 2 ® 2CO 2 (моль/л×с), если известно, что исходная концентрация CO составляла 0,60 моль/л, а через 10 секунд стала 0,15 моль/л. На сколько моль/л изменилась за этот промежуток времени концентрация CO 2 ?

3) 0,045; 0,045,

20. На сколько градусов нужно нагреть систему, чтобы скорость протекающей в ней реакции увеличилась в 2–4 раза?

1) 150, 2) 10, 3) 200, 4) 50.

21. Скорость реакции при 20°С равна 0,2 моль/л×с. Определите скорость реакции при 60°C (моль/л×с), если температурный коэффициент скорости реакции равен 3.

1) 16,2, 2) 32,4, 3) 8,1, 4) 4,05.

22. Эмпирическую зависимость скорости реакции от температуры верно отражает уравнение:

23. Скорость реакции при 20°С равна 0,08 моль/л×с. Вычислите скорость реакции при 0°С (моль/л×с), если температурный коэффициент скорости реакции равен 2.

1) 0,16, 2) 0,04, 3) 0,02, 4) 0,002.

24. Во сколько раз возрастет скорость реакции при повышении температуры на 40°С, если температурный коэффициент скорости реакции равен 3?

1) 64, 2) 243, 3) 81, 4) 27.

25. На сколько градусов следует повысить температуру, чтобы скорость реакции возросла в 64 раза, если температурный коэффициент скорости реакции равен 4?

1) 60, 2) 81, 3) 27, 4) 30.

26. Вычислите температурный коэффициент скорости реакции, если известно, что при повышении температуры на 50 о С скорость реакции возрастает в 32 раза.

1) 3, 2) 2, 3) 4, 4) 2,5.

27. Причиной роста скорости реакции с ростом температуры является увеличение:

1) скорости движения молекул,

2) числа столкновений между молекулами,

3) доли активных молекул,

4) стабильности молекул продуктов реакции.

28. Укажите номер или сумму условных номеров, под которыми приведены реакции, для которых MnO 2 является катализатором:

1) 2KClO 3 ® 2KCl + 3O 2 ,

2) 2Al + 3I 2 ® 2AlI 3 ,

4) 2H 2 O 2 ® 2H 2 O + O 2 ,

8) 2SO 2 + O 2 ® 2SO 3 .

29. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. С помощью каталитических реакций в промышленности получают:

1) соляную кислоту,

2) серную кислоту,

4) аммиак,

8) азотную кислоту.

30. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Катализатор:

1) участвует в реакции,

2) используется только в твердом состоянии,

4) не расходуется в ходе реакции,

8) в своем составе обязательно содержит атом металла.

31. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. В качестве катализаторов используются:

32. Вещества, уменьшающие активность катализатора, называются:

1) промоторами,

2) регенераторами,

3) ингибиторами,

4) каталитическими ядами.

33. Каталитической не является реакция:

1) (C 6 H 10 O 5) n + n H 2 O ® n C 6 H 12 O 6 ,

целлюлоза

2) 2SO 2 + O 2 ® 2SO 3 ,

3) 3H 2 + N 2 ® 2NH 3 ,

4) NH 3 + HCl ® NH 4 Cl.

34. Под каким номером приведено уравнение гомогенного катализа:

35. Механизм действия катализатора верно отражает высказывание. Катализатор:

1) увеличивая кинетическую энергию исходных частиц, увеличивает число их столкновений,

2) образует с исходными веществами промежуточные соединения, легко превращающиеся в конечные вещества,

3) не взаимодействуя с исходными веществами, направляет реакцию по новому пути,

4) уменьшая кинетическую энергию исходных частиц, увеличивает число их столкновений.

36. Роль промотора в каталитической реакции состоит в том, что он:

1) уменьшает активность катализатора,

2) увеличивает активность катализатора,

3) ведет реакцию в желаемом направлении,

4) защищает катализатор от каталитических ядов.

37. Ферменты:

1) биологические катализаторы,

2) имеют белковую природу,

4) не отличаются специфичностью действия,

8) ускоряют биохимические процессы в живых организмах.

38. Гетерогенной является реакция:

39. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Чтобы увеличить скорость горения угля: С + O 2 ® СО 2 , необходимо:

1) увеличить концентрацию О 2 ,

2) увеличить концентрацию угля,

4) измельчить уголь,

8) увеличить концентрацию углекислого газа.

40. Если реагирующее вещество А взято в реакцию: А т + Х газ ® в твердом состоянии, то на скорость реакции влияет:

1) концентрация А,

2) площадь поверхности соприкосновения А с Х,

4) молярная масса А,

8) концентрация вещества Х.

41. Размерностью скорости гетерогенной реакции является:

1) моль/л, 2) моль/cм 3 ×с,

3) моль/л×с 4) моль/см 2 ×с.

42. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Принцип кипящего слоя используют:

1) для увеличения поверхности соприкосновения реагентов,

2) при обжиге колчедана,

4) в ходе каталитического крекинга нефтепродуктов,

8) для регенерации активности катализатора.

43. Наименьшую

1) Na + H 2 O ® 2) Ca + H 2 O ®

3) K + H 2 O ® 4) Mg + H 2 O ®

44. На графике приведены энергетические диаграммы некаталитической и каталитической реакции разложения иодоводорода. Изменение энергии активации отражает энергетический отрезок:

1) b , 2) c , 3) d , 4) b– c .

45. Наибольшую энергию активации имеет реакция, описываемая схемой:

1) AgNO 3 + KCl ® AgCl + KNO 3 ,

2) BaCl 2 + K 2 SO 4 ® BaSO 4 + 2KCl,

3) 2Na + 2H 2 O ® 2NaOH + 2H 2 ,

6.2. Химическое равновесие.

Наряду с практически необратимыми химическими реакциями:

СaCl 2 + 2AgNO 3 = Ca(NO 3) 2 + 2AgCl↓ и др.

известны многочисленные процессы, когда химическое превращение не доходит до конца, а возникает равновесная смесь всех участников и продуктов реакции, находящихся как в левой, так и в правой частях стехиометрического уравнения реакции. Так, при стандартных условиях обратимой является система:

Рассмотрим особенности протекания обратимых процессов на примере системы, которая, в общем виде, имеет вид:

При условии, что прямая → и обратная ← реакции протекают в одну стадию, согласно закону действующих масс значения скоростей для прямой (V прям) и обратной (V обр) реакций описываются следующими кинетическими уравнениями:

где k прям и k обр - константы скорости, соответственно, прямой и обратной реакций.

В начальный момент времени (см. рис. 6.2) концентрации исходных веществ [A] и [B], а следовательно, и скорость прямой реакции имеют максимальное значение. Концентрации продуктов реакции [С] и [D] и скорость обратной реакции в начальный момент равны нулю. В ходе реакции концентрации исходных веществ уменьшаются, что приводит к снижению скорости прямой реакции. Концентрации же продуктов реакции, а, следовательно, и скорость обратной реакции возрастают. Наконец, наступает момент, при котором скорости прямой и обратной реакций становятся равными.

Состояние системы, при котором V прям = V обр называется химическим равновесием . Это равновесие является динамическим , поскольку в системе имеет место двусторонняя реакция – в прямом (A и B – реагенты, C и D – продукты) и в обратном (A и B – продукты, C и D – реагенты) направлениях.

V обр.

Время реакции

Рис. 6.2. Зависимость скоростей прямой и обратной реакций

от времени их протекания.

В обратимой системе, находящейся в состоянии равновесия, концентрации всех участников процесса называются равновесными концентрациями , так как при этом постоянно и с одинаковой скоростью протекают как прямая, так и обратная реакции.

Количественную характеристику химического равновесия можно вывести, используя соответствующие кинетические уравнения :

Так как константы скоростей реакций при фиксированной температуре постоянны, то будет постоянным и отношение

называемое константой химического равновесия . Приравнивая правые части кинетических уравнений для прямой и обратной реакций можно получить:

где K р – константа химического равновесия, выраженная через равновесные концентрации участников реакции.

Константа химического равновесия представляет собой отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ в степенях их стехиометрических коэффициентов.

Например, для обратимой реакции

выражения для константы равновесия имеет вид:

Если в процессе химического превращения участвуют две или несколько фаз, то в выражении для константы равновесия следует учитывать только те из них, в которых происходят изменения концентраций реагентов. Например, в выражение для константы равновесия для системы

общее количество моль газообразных веществ до и после реакции остается постоянным и давление в системе не меняется. Равновесие в данной системе при изменении давления не смещается.

Влияние изменения температуры на смещение химического равновесия.

В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое – эндотермическому. Так в реакции синтеза аммиака прямая реакция – экзотермическая, а обратная реакция – эндотермическая.

1) концентрации H 2 , N 2 и NH 3 не изменяются со временем,

3) число молекул NH 3 , распадающихся в единицу времени, равно половине общего числа молекул H 2 и N 2 , образующихся за это время,

4) общее число молекул H 2 и N 2 , превращающихся в единицу времени в NH 3 , равно числу молекул NH 3 , образующихся за это же время.

49. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Химическое равновесие в системе: 2SO 2 + O 2 2SO 3 ∆Н ˂0 нарушит:

1) уменьшение давления в системе,

2) нагревание,

4) увеличение концентрации кислорода.

50. Укажите номер или сумму условных номеров, под которыми приведены правильные ответы. Чтобы сместить равновесие в системе N 2 + 3H 2 2NH 3 ∆Н ˂0 влево, надо:

1) ввести в систему H 2 ,

2) удалить из системы NH 3 ,

4) повысить давление,

8) увеличить температуру.

51. Для смещения равновесия реакции 2SO 2 + O 2 2SO 3 ∆Н ˂0 вправо, необходимо:

1) нагреть систему,

2) ввести в систему O 2 ,

4) ввести в систему SO 3 ,

8) уменьшить давление в системе.

52. Правилу (принципу) Ле Шателье не соответствует утверждение:

1) повышение температуры смещает равновесие в сторону эндотермической реакции;

2) понижение температуры смещает равновесие в сторону экзотермической реакции;

3) повышение давления смещает равновесие в сторону реакции, ведущей к увеличению объема;

N 2 + O 2 ∆Н ˂0,2H 2 O (пар) , 2NH 3 кат. 3H 2 + N 2 . B ,

2) k 1 Ч = k 2 2 ,

67. На константу равновесия (K p ) влияет:

1) давление,

2) температура,

3) концентрация,

4) катализатор.

Цель работы: изучение влияние температуры на скорость реакции концентрации на сдвиг химического равновесия. Теоретическое обоснование: Скоростью химической реакции называется количество вещества вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объёма для гомогенных реакций или на единице поверхности раздела фаз для гетерогенных реакций. Если за промежуток времени...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


"Уфимский государственный нефтяной технический университет"

Кафедра "Общая и аналитическая химия"

ОТЧЕТ

По лабораторной работе № 1

«Химическая кинетика и равновесие»

Студентка группы _______________Е.В.Белецкова

БТС-14-01

Доцент _______________С.Б.Денисова

2014

Цель работы : изучение влияние температуры на скорость реакции, концентрации на сдвиг химического равновесия.

Теоретическое обоснование :

Скоростью химической реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объёма (для гомогенных реакций) или на единице поверхности раздела фаз (для гетерогенных реакций).

Если за промежуток времени ∆τ = τ 2  τ 1 концентрация одного из веществ, участвующих в реакции, уменьшается на ∆С = С 2  С 1 , то средняя скорость химической реакции за указанный промежуток времени равна

Величина V выражает скорость химического процесса на некотором отрезке времени. Поэтому чем меньше ∆τ, тем средняя скорость будет ближе к истинной.

Скорость химической реакции зависит от следующих факторов:

  1. природы и концентрации реагирующих веществ;
  2. температуры реакционной системы;
  3. наличия катализатора;
  4. давления,
  5. величины поверхности раздела фаз и скорости перемешивания системы (для гетерогенных реакций);
  6. типа растворителя.

Влияние концентрации реагентов. Скорость реакции пропорциональна числу соударений молекул реагирующих веществ. Число соударений, в свою очередь, тем больше, чем выше концентрация каждого из исходных веществ.

Общую формулировку влияния концентрации на скорость химической реакции даёт закон действия масс (1867 г., Гульдберг, Вааге, Бекетов).

При постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях их уравнительных (стехиометрических) коэффициентов.

Для реакции аА + вВ = сС V = K [ A ] а [ B ] в ,

где К – коэффициент пропорциональности или константа скорости;

концентрация реагента в моль/л.

Если [А] = 1 моль/л, [В] =1 моль/л, то V = K , отсюда физический смысл

константы скорости К: константа скорости равна скорости реакции при концентрациях реагирующих веществ, равных единице.

Влияние температуры на скорость реакции. С ростом температуры увеличивается частота столкновения реагирующих молекул, а следовательно, увеличивается скорость реакции.

Количественно влияние температуры на скорость гомогенных реакций может быть выражено правилом Вант-Гоффа.

В соответствии с правилом Вант-Гоффа при повышении (понижении) температуры на 10 градусов скорость химической реакции увеличивается (уменьшается) в 2-4 раза:

или ,

где V (t 2 ) и V (t 1 ) – скорости химической реакции при соответствующих температурах; τ (t 2 ) и τ (t 1 ) – продолжительность химической реакции при соответствующих температурах; γ – температурный коэффициент Вант-Гоффа, который может принимать числовое значение в интервале 2-4.

Энергия активации. Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества, называется энергией активации данной реакции (выражается в кДж/моль). Одним из способов активации является увеличение температуры: при повышении температуры число активных частиц сильно возрастает, благодаря чему резко увеличивается скорость реакции.

Зависимость скорости реакции от температуры выражается уравнением Аррениуса:

где К – константа скорости химической реакции; E а – энергия активации;

R – универсальная газовая постоянная; А – постоянная; exp – основание натуральных логарифмов.

Величина энергии активизации может быть определена, если известны два значения константы скорости К 1 и К 2 при температуре соответственно Т 1 и Т 2 , по следующей формуле:

Химическое равновесие.

Все химические реакции можно разделить на две группы: необратимые и обратимые. Необратимые реакции протекают до конца – до полного израсходования одного из реагирующих веществ, т.е. протекают только в одном направлении. Обратимые реакции протекают не до конца. При обратимой реакции ни одно из реагирующих веществ не расходуется до конца. Обратимая реакция может протекать как в прямом, так и в обратном направлении.

Химическое равновесие – это такое состояние системы, при котором скорости прямой и обратной реакций равны.

Для обратимой реакции

m A + n B ⇄ p C + q D

константа химического равновесия равна

В обратимых химических реакциях равновесие устанавливается в тот момент, когда отношение произведения концентраций продуктов, возведенных в степени, равные стехиометрическим коэффициентам, к произведению концентраций исходных веществ, также возведенных в соответствующие степени, равно некоторой постоянной величине, называемой константой химического равновесия.

Константа химического равновесия зависит от природы реагирующих веществ и от температуры. Концентрации, при которых устанавливается равновесие, называются равновесными. Изменение внешних условий (концентрации, температуры, давления) вызывает смещение химического равновесия в системе и переход ее в новое равновесное состояние.

Подобный переход реакционной системы из одного состояния к другому называется смещением (или сдвигом) химического равновесия.

Направление смещения химического равновесия определяется принципом Ле Шателье: если на систему, находящуюся в состоянии химического равновесия, производить какое-либо внешнее воздействие (изменять концентрацию, температуру, давление), то в этой системе самопроизвольно возникают процессы, стремящиеся ослабить произведенное воздействие.

Повышение концентрации одного из исходных реагентов сдвигает равновесие вправо (усиливается прямая реакция); повышение концентрации продуктов реакция смещает равновесие влево (усиливается обратная реакция).

Если реакция протекает с увеличением числа молекул газа (т.е. в правой части уравнения реакции суммарное число молекул газов больше, чем число молекул газообразных веществ в левой части), то повышение давления препятствует реакции, а уменьшение давления – благоприятствует реакции.

При повышении температуры равновесие смещается в сторону эндотермической реакции, а при понижении – в направлении экзотермической реакции.

Катализатор изменяет в одинаковое число раз как скорость прямой, так и обратной реакции. Поэтому катализатор не вызывает сдвиг равновесия, а лишь сокращает или увеличивает время, необходимое для достижения равновесия.

Опыт № 1 Зависимость скорости гомогенной реакции от концентрации исходных реагентов.

  • Приборы, оборудование: пробирки,секундомер,растворы тиосульфата натрия ( III ) , разб. серной кислоты (1М), вода.
  • Методика проведения: Эту зависимость можно изучить на классическом примере гомогенной реакции взаимодействия тиосульфата натрия с серной кислотой, протекающей по уравнению

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + S↓ + SO 2 + H 2 O.

Сера в первый момент образует с водой коллоидный раствор (едва уловимое помутнение). Необходимо измерить по секундомеру время от момента сливания до появления едва заметной мути. Зная время протекания реакции (в секундах), можно определить относительную скорость реакции, т.е. величину, обратную времени: .

Для опыта следует приготовить три сухие чистые пробирки, пронумеровать их. В первую внести 4 капли раствора тиосульфата натрия и 8 капель воды; во вторую – 8 капель тиосульфата натрия и 4 капли воды; в третью – 12 капель тиосульфата натрия. Пробирки встряхнуть.

Если условно обозначить молярную концентрацию тиосульфата натрия в пробирке 1 через «с», то соответственно в пробирке 2 будет 2 с моль, в пробирке 3 – 3 с моль.

В пробирку 1 внести одну каплю серной кислоты, одновременно включить секундомер: встряхивая пробирку, следить за появлением мути в пробирке, держа ее на уровне глаз. При появлении малейшей мути остановить секундомер, отметить время реакции и записать в таблицу.

Проделать аналогичные опыты со второй и третьей пробирками. Данные опыта внести в лабораторный журнал в виде таблицы…

№ пробирки

Количество капель

Na 2 S 2 O 3

Количество капель воды

Количество капель H 2 SO 4

Концентрация Na 2 S 2 O 3

в молях

Время реакции

τ , с

Относительная скорость V =1/ τ ,

c -1

26,09

3,83

12,19

8,27

12,09


График зависимости скорости реакции от концентрации тиосульфата натрия.

  • Вывод: с повышением концентрации тиосульфата натрия скорость данной реакции возрастает. Графиком зависимости является прямая линия, проходящая через начало координат.

Опыт № 2. Изучение зависимости скорости гомогенной реакции от температуры.

  • Приборы и оборудование: пробирки, секундомер, термометр, растворы тиосульфата натрия ( III ), серной кислоты (1М)
  • Методика проведения:

Приготовить три чистые сухие пробирки, пронумеровать их. В каждую из них внести по 10 капель раствора тиосульфата натрия. Пробирку № 1 поместить в стаканчик с водой при комнатной температуре и через 1…2 минуты отметить температуру. Затем в пробирку добавить одну каплю серной кислоты, одновременно включить секундомер и остановить его при появлении слабой, едва заметной мути. Отметить время в секундах от момента добавления кислоты в пробирку до появления мути. Записать результат в таблицу.

Затем повысить температуру воды в стакане точно на 10 0 либо нагреванием на плитке, либо смешиванием с горячей водой. Поместить в эту воду пробирку № 2, выдержать несколько минут и добавить одну каплю серной кислоты, включив одновременно секундомер, встряхивать пробирку с содержимым в стаканчике с водой до появления мути. При появлении едва заметной мути выключить секундомер и внести показания секундомера в таблицу. Аналогичный опыт провести с третьей пробиркой. Температуру в стакане предварительно повысить ещё на 10 0 , поместить в неё пробирку № 3, выдержать несколько минут и добавить одну каплю серной кислоты, одновременно включив секундомер и встряхивая пробирку.

Результаты опытов выразить графиком, откладывая по оси ординат скорость, а по оси абсцисс – температуру.

Определить температурный коэффициент реакции γ

Пробирки

Температура

t , 0 C

Время реакции

τ, с

Относительная скорость

реакции

1/τ,с -1

Температурный коэффициент

26,09

17,22

10,74

3,83

5,81

9,31

1,51

1,55

График зависимости скорости реакции от температуры .

  • Вывод: в ходе опыта был рассчитан средний температурный коэффициент, который оказался равным 1,55. В идеале он составляет

2-4. Отклонение от идеала можно объяснить погрешностью измерения времени помутнения раствора. График зависимости скорости реакции от температуры имеет вид ветви параболы, которая не проходит через 0. С повышением температуры скорость реакции увеличивается

Опыт № 3 Влияние концентрации реагирующих веществ на химическое равновесие.

  • Приборы и оборудование: пробирки, хлорид калия (крист.), растворы хлорида железа ( III ), роданид калия (насыщ.), дистиллированная вода, цилиндр
  • Методика проведения:

Классическим примером обратимой реакции является взаимодействие между хлоридом железа и роданидом калия:

FeCl 3 + 3 KCNS ⇄ Fe(CNS) 3 + 3 KCl.

красного цвета

Образующийся роданид железа имеет красный цвет, интенсивность которого зависит от концентрации. По изменению окраски раствора можно судить о смещении химического равновесия в зависимости от увеличения или уменьшения содержания роданида железа в реакционной смеси. Составить уравнение константы равновесия данного процесса.

В мерный стаканчик или цилиндр налить 20 мл дистиллированной воды и добавить одну каплю насыщенного раствора хлорида железа ( III ) и одну каплю насыщенного раствора роданида калия . Полученный окрашенный раствор разлить в четыре пробирки поровну. Пробирки пронумеровать.

В первую пробирку прибавить одну каплю насыщенного раствора хлорида железа ( III ).Во вторую пробирку прибавить одну каплю насыщенного раствора роданида калия.В третью пробирку добавить кристаллический хлорид калия и сильно взболтать. Четвёртая пробирка  для сравнения.

Исходя из принципа Ле Шателье, объяснить, чем вызвано изменение окраски в каждом отдельном случае.

Результаты опыта записать в таблицу по форме

пробирки

Что

добавлено

Изменение

интенсивности

окраски

Направление смещения равновесия

(вправо, влево)

В первом во втором случае мы повышали концентрацию исходных веществ, поэтому получается более интенсивная окраска. Причем во втором случае окраска темнее, потому что концентрация KSCN изменяется с кубической скоростью. В третьем опыте мы повышали концентрацию конечного вещества, поэтому окраска раствора светлей.

Вывод: при повышении и концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции. При повышении концентрации продуктов равновесие смещается в сторону образования исходных веществ.

Общие выводы: в ходе опытов мы экспериментально установили зависимость скорости реакции от концентрации исходных веществ (чем выше концентрация, тем выше скорость реакции) ;зависимость скорости реакции от температуры (чем выше температура, тем больше скорость реакции) ; как концентрация реагирующих веществ влияет на химическое равновесие (при повышении концентрации исходных веществ химическое равновесие смещается в сторону образования продуктов; при повышении концентрации продуктов хим.равновесие смещается в сторону образования исходных веществ)

Другие похожие работы, которые могут вас заинтересовать.вшм>

10376. Кинетика химических и биохимических процессов 52.88 KB
Изменение скорости какой-либо реакции может быть либо причиной развития патологии либо лежать в основе защитной функции организма. К основным понятиям химической кинетики относятся механизм и скорость химической реакции. Механизм реакции – это последовательность и характер стадий данного химического процесса. В зависимости от механизма реакции могут быть: простые – протекают в одну стадию пример: ионные реакции; сложные – протекают в несколько стадий пример: образование воды из кислорода и водорода.
13123. Термодинамика и кинетика процессов с участием твёрдых фаз 177.55 KB
Из курса классической термодинамики известно, что термодинамические уравнения связывают между собой свойства любой равновесной системы, каждое из которых может быть измерено независимыми методами. В частности, при постоянном давлении справедливо соотношение
9161. Химическая эволюция Земли 24.45 KB
Ранее уже говорилось о том что использование ЭВМ позволило строить и рассчитывать образование и развитие солнечной системы и Земли в частности на различных моделях. Химическая эволюция Земли В процессе эволюции Земли складывались определенные пропорции различных элементов. Земля наиболее массивная среди внутренних планет прошла сложнейший путь химической эволюции. Следует подчеркнуть что геологическая история Земли...
21607. Химическая коррозия. Методы защиты от коррозии 21.93 KB
Машины и аппараты изготовленные из металлов и сплавов при эксплуатации в природных или технологических средах подвержены коррозии. В результате коррозии изменяются свойства металла и часто происходит ухудшение его функциональных характеристик. Металл при коррозии может частично или полностью разрушаться.
12744. Химическая характеристика природных вод - объектов эколого-аналитического контроля 82.84 KB
Природные воды как дисперсные системы. Водородный показатель рН влияние малых концентраций кислот и щелочей на рН природной воды. Природные воды как дисперсные системы. Объектом экологоаналитического контроля являются воды – пресные поверхностные подземные морские а также атмосферные осадки талые воды сточные воды сбрасываемые в поверхностные водоемы.
7451. Рыночное равновесие 89.02 KB
Эластичность спроса. Взаимодействие спроса и предложения. Объём спроса это то количество товара которое потребители готовы купить при данной цене в единицу времени. Закон спроса.
3093. Макроэкономическое равновесие в модели “AD-AS” 6.72 KB
Совокупный спрос – это суммарное количество товаров и услуг которые намерены купить домашние хозяйства бизнес государство заграница при различном уровне цен в стране. Кривая D иллюстрирует изменение совокупного уровня всех расходов домашних хозяйств бизнеса государства и заграницы в зависимости от изменения уровня цен. Отрицательный наклон кривой D объясняется: эффектом процентной ставки если происходит повышение уровня цен в стране то происходит повышение ставки процента и как следствие – сокращение инвестиционного спроса I...
16735. Стохастическое равновесие в транспортных сетях 73.81 KB
Модели выбора Предположим что перед лицом принимащим решения ЛПР стоит задача выбора одной из альтернатив. С каждой из альтернатив можно связать некоторую полезность которую ЛПР получает в случае выбора альтернативы. Если известно распределение значений то можно вычислить вероятность выбора ЛПР отдельной альтернативы. Функцию будем называть функцией выбора.
13374. Долгосрочное равновесие конкурентной фирмы 31.87 KB
Структура издержек типичной фирмы в краткосрочном периоде имеет вид кривых STC1 и SMC1 рис.9 Долгосрочное равновесие совершенно конкурентной отрасли Механизм формирования долгосрочного равновесия При этих условиях оптимальный объем выпуска фирмы в краткосрочном периоде составит q1 единиц. Производство данного объема обеспечивает фирме положительную экономическую прибыль поскольку рыночная цена Р1 превышает средние краткосрочные издержки фирмы SТC1.
3500. Равновесие на рынке. Равновесная цена 9.97 KB
На конкурентном рынке происходит взаимодействие спроса и предложения в результате чего устанавливается рыночное равновесие. При наложении кривых спроса и предложения определяется равновесная цена E т. оптимальное соотношение спроса и предложения т. Для определения краткосрочной или долгосрочной перспективы развития спроса и предложения вводится фактор времени.
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!