Образовательный портал - Varnavinschool

Энтальпия и энтропия. Расчет энтальпии

Энтропия

Энтропия (от греч. ?нфспрЯб - поворот, превращение) - понятие, впервые введенное в термодинамике для определения меры необратимого рассеивания энергии. Термин широко применяется и в других областях знания: в статистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы, в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Энтропия - функция состояния системы, равная в равновесном процессе кол-ву теплоты сообщенной системе или отведенной из системы.

Энтропия - связь между макро и микро состояниями, единственная функция в физике, которая показывает направленность процессов. Функция состояния системы, которая не зависит от перехода из одного состояния в другое, а зависит только от начального и конечного положения системы.

Энтальпия

Энтальпимя, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня с грузом весом Р = p S, уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной. Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV

H = E = U + pV Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии и другим термодинамическим потенциалам - имеет вполне определенное значение для каждого состояния, т. е. является функцией состояния. Следовательно, в процессе изменения состоянияДH = H2 ? H1Изменение энтальпии не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс).

Внутренняя энергия, энергия тела, зависящая только от его внутреннего состояния. Понятие Внутренняя энергия объединяет все виды энергии тела, за исключением энергии его движения как целого и потенциальной энергии, которой тело может обладать, если оно находится в поле каких-нибудь сил (например, в поле сил тяготения).

Энтальпия (Н) - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термoдинамическое свoйство вещества, котoрое указывает уровень энергии, сохранённoй в его молекулярнoй структуре.

Это значит, чтo, хотя веществo мoжет oбладать энергией на oсновании темпeратуры и давления, не всю её можно преобразовать в тeплоту. Часть внутрeнней энергии всeгда остаётся в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Дж/кг для удельной энергии.

Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом Eпот = pSx = pV

Таким образом, энтальпия в данном состоянии представляет собой сумму внутренней энергии тела и работы, которую необходимо затратить, чтобы тело объёмом V ввести в окружающую среду, имеющую давление р и находящуюся с телом в равновесном состоянии. Энтальпия системы H - аналогично внутренней энергии - имеет вполне определенное значение для каждого состояния: ΔH = H2 − H1

Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра равно нулю, а отсюда ΔU = 0 и ΔH = 0.

Энтропи́я - понятие, впервые возникшее в термодинамике как мера необратимого рассеяния энергии.

Энтропия (S (Дж/К)) связана с числом (W) равновероятных микроскопических состояний, которыми можно реализовать данное макроскопическое состояние системы, уравнением

Где K- коэффициент пропорциональности.

Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла который имеет какие – либо неправильности несколько больше.

С повышением температуры энтропия всегда возрастает, так же возрастает при превращение вещества из кристаллического состояния в жидкое, и в особенности при переходе из жидкого состояния в газообразное.

Энтропия зависит только от состояния системы. Но связь изменения энтропии с теплотой зависит от способа проведения процесса – от его скорости.

Если процесс проходит обратимо и при постоянной температуре:

Изменение S = Q(обр)/T. Q(обр)- кол-во теплоты, T- абсолютная температура.

Энтальпия против энтропии

Любопытство - это один аспект человека, который помогает ему открывать различные явления в мире. Один человек смотрит на небо и задается вопросом, как образуется дождь. Один человек смотрит на землю и задается вопросом, как растения могут расти. Это повседневное явление, с которым мы сталкиваемся в нашей жизни, но те люди, которые недостаточно любознательны, никогда не пытаются найти ответы, почему такие явления существуют. Биологов, химиков и физиков всего лишь несколько человек, которые пытаются найти ответы. Наш современный мир сегодня интегрирован с такими законами науки, как термодинамика. «Термодинамика» - это отрасль естествознания, которая включает изучение внутренних движений систем организма. Это исследование, посвященное взаимосвязи тепла с различными формами энергии и работы. Применения термодинамики проявляются в потоке электричества и от простого поворота и поворота винта и других простых машин. Пока задействованы тепло и трение, существует термодинамика. Двумя наиболее распространенными принципами термодинамики являются энтальпия и энтропия. В этой статье вы узнаете больше о различиях между энтальпией и энтропией.

В термодинамической системе мера ее полной энергии называется энтальпией. Для создания термодинамической системы требуется внутренняя энергия. Эта энергия служит толчком или триггером для создания системы. Единицей измерения энтальпии является джоуль (Международная система единиц) и калория (Британская тепловая единица). «Энтальпия» - это греческое слово «энтальпос» (чтобы влить тепло). Heike Kamerlingh Onnes был человеком, который придумал это слово, в то время как Альфред У. Портер был тем, кто обозначил символ «H» для «энтальпии». В биологических, химических и физических измерениях энтальпия является наиболее предпочтительным выражением для изменений энергии системы, поскольку она имеет возможность упростить конкретные определения передачи энергии. Невозможно достичь значения для общей энтальпии, потому что общая энтальпия системы не может быть непосредственно измерена. Только изменение энтальпии является предпочтительным измерением количества, а не абсолютной величиной энтальпии. В эндотермических реакциях наблюдается положительное изменение энтальпии, а при экзотермических реакциях происходит отрицательное изменение энтальпии. Проще говоря, энтальпия системы эквивалентна сумме не механической работы и подаваемого тепла. При постоянном давлении энтальпия эквивалентна изменению внутренней энергии системы и работе, которую система проявила к ее окружению. Другими словами, тепло может поглощаться или выделяться определенной химической реакцией в таких условиях.

«Энтропия» - второй закон термодинамики. Это один из самых фундаментальных законов в области физики. Это важно для понимания жизни и познания. Это рассматривается как Закон Беспорядка. В середине прошлого века «энтропия» уже была сформулирована с обширными усилиями Клаузиуса и Томсона. Клаузиус и Томсон были вдохновлены наблюдением Карно потоком, который превращает мельничное колесо. Карно заявил, что термодинамика - это поток тепла от более высоких до более низких температур, что делает работу парового двигателя. Клаузиус был тем, кто придумал термин «энтропия». Символом энтропии является «S», который гласит, что мир считается неотъемлемо активным, когда он действует спонтанно, чтобы рассеять или минимизировать наличие термодинамической силы.

    «Энтальпия» - это передача энергии, а «энтропия» - это Закон Беспорядка.

    Энтальпия берет символ «H», а энтропия принимает символ «S».

    Хайке Камерлингх Оннес придумал термин «энтальпия», а Клаузиус придумал термин «энтропия».

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Энтальпия , тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.

Изменение энтальпии не зависит от пути процесса, определяясь только начальным и конечным состоянием системы. Если система каким-либо путём возвращается в исходное состояние (круговой процесс), то изменение любого её параметра, являющегося функцией состояния, равно нулю, отсюда ДH = 0

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

· Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс ).

Молярная теплоёмкость при постоянном давлении обозначается как C p . В идеальном газе она связана с теплоёмкостью при постоянном объёме соотношением Майера C p = C v + R .

Молекулярно-кинетическая теория позволяет вычислить приблизительные значения молярной теплоёмкости для различных газов через значение универсальной газовой постоянной :

· для одноатомных газов, то есть около 20.8 Дж/(моль·К);

· для двухатомных газов, то есть около 29.1 Дж/(моль·К);

· для многоатомных газов C p = 4R , то есть около 33.3 Дж/(моль·К).

где теплоёмкость при постоянном давлении обозначается как C p

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298 К = 25 ?С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ДH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений ):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ДC p (T 1 , T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ДC p (T f , T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода. Стандартная энтальпия сгорания

Стандартная энтальпия сгорания - ДH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения - ДH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ДH реш > 0, а гидратация ионов - экзотермический, ДH гидр < 0. В зависимости от соотношения значений ДH реш и ДH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ДH раствKOH о = ДH реш о + ДH гидрК +о + ДH гидрOH -о = ?59 КДж/моль

Под энтальпией гидратации - ДH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Теплоемкость с P , c V [Дж. моль -1. К -1 , кал. моль -1. К -1 ]

Истинная молярная теплоемкость:

при V = const c V =; P = const c P =.

Средняя молярная теплоемкость численно равна теплоте, которую надо сообщить одному молю вещества, чтобы нагреть его на 1 К: .

Теплоемкости при постоянном давлении или объеме связаны равенством

для идеального газа ;

для крист. вещества (, T - термические коэффициенты).

Температурная зависимость теплоемкости многих одноатомных кристаллов при T < q D /12 описывается законом кубов Дебая (q D - характеристическая температура Дебая) c V = aT 3 , при T c V 3R. В области средних температур применяют различные степенные полиномы (см., напр., закон Кирхгофа).

Правило Дюлонга и Пти : атомная теплоемкость при V = const для любого простого кристаллического вещества приблизительно равна с V 3R (т.е. 25 Дж. моль -1. К -1).

Правило аддитивности: (с P,i - теплоемкость составляющих соединение структурных фрагментов, напр., атомов или групп атомов).

Теплота [Дж. моль -1 , кал. моль -1 ] Q - форма передачи энергия от более нагретого тела к менее нагретому, не связанная с переносом вещества и совершением работы.

Теплота химической реакции при постоянном объеме или давлении (т.е. тепловой эффект химической реакции) не зависит от пути проведения процесса, а определяется только начальным и конечным состоянием системы (закон Гесса):

= U, = H.

Разность тепловых эффектов при P = const (Q P) и V = const (Q V) равна работе, которая совершается системой (V>0) или над системой (V<0) за счет изменения ее объема при завершении изобарно-изотермической реакции:

- = n RT.

Стандартная теплота реакции может быть рассчитана через стандартные теплоты образования () или сгорания () веществ:

где n i,j - стехиометрические коэффициенты в уравнении химической реакции.

Для идеальных газов при T, P = const: r H = r U + n RT.

Зависимость теплового эффекта химической реакции от температуры определяется законом Кирхгофа .

= = , = = ,

т.е. влияние температуры на тепловой эффект реакции обусловлено разностью теплоемкостей продуктов реакции и исходных веществ c учетом стехиометрических коэффициентов:

При P = const:

энтальпия термодинамический энтропия давление

Если температурная зависимость c P аппроксимирована уравнением

= a + b . T + c . , то

H(T 2 ) = H(T 1 )+ а . .

Теплота адсорбции - отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции. Адсорбция - всегда экзотермический процесс (Q > 0). При постоянной адсорбции (Г, q = const):

Величина Q является косвенным критерием определения типа адсорбции: если Q < 30 40 кДж/моль) - физическая адсорбция, Q > 40 кДж/моль - хемосорбция.

Теплота образования - изобарный тепловой эффект химической реакции образования данного химического соединения из простых веществ, отнесенный к одному молю этого соединения. При этом считают, что простые вещества реагируют в той модификации и том агрегатном состоянии, которые устойчивы при данной температуре и давлении 1 атм.

Теплота сгорания (т.с.) - тепловой эффект сгорания 1 моля вещества и охлаждения продуктов реакции до первоначальной температуры смеси. Т.С., если не оговорено особо, отвечает сгоранию С до СО 2 , H 2 до H 2 O (ж.), для остальных веществ в каждом случае указывают продукты их окисления.

Теплота фазового перехода - теплота, поглощаемая (выделяемая) в результате равновесного перехода вещества из одной фазы в другую (см. переход фазовый).

Термодинамические переменные (т. п.) - величины, количественно выражающие термодинамические свойства. Т.П. разделяют на независимые переменные (измеряемые в опыте) и функции. Прим.: давление, температура, элементный химический состав - независимые т. п., энтропия, энергия - функции. Набором значений независимых переменных задается термодинамическое состояние системы (см. также ур-ние состояния). Переменные, которые фиксированы условиями существования системы, и, следовательно, не могут изменяться в пределах рассматриваемой задачи, называют термодинамическими параметрами.

Экстенсивные - т. п., пропорциональные количеству вещества или массе системы. Прим .: объем, энтропия, внутренняя энергия, энтальпия, энергии Гиббса и Гельмгольца, заряд, площадь поверхности.

Интенсивные - т. п., не зависящие от количества вещества или массы системы. Прим. : давление, термодинамическая температура, концентрации, мольные и удельные термодинамические величины, электрический потенциал, поверхностное натяжение. Экстенсивные т. п. складываются, интенсивные - выравниваются.

Внутреняя энергия (U ) вещества складывается из кинетической и потенциальной энергии всех частиц вещества, кроме кинетической и потенциальной энергии вещества в целом. Внутреняя энергия зависит от природы вещества, его массы, давления, температуры. При химических реакциях разница величин внутренней знергии веществ до и после реакции выливается в тепловой эффект химической реакции. Различают тепловой эффект химической реакции, осуществляемой при постоянном объеме Q v (изохорный тепловой эффект), и тепловой эффект реакции при постоянном давлении Q p (изобарный тепловой эффект).

Тепловой эффект при постоянном давлении, взятый с противоположным знаком называют изменением энтальпии реакции (ΔH = -Q p).

Энтальпия связана с внутренней энергией H = U + pv, где p – давление, а v – объем.

Энтропия (S) – мера беспорядка в системе. Энтропия газа больше, чем энтропия жидкости и твердого тела. Энтропия это логарифм вероятности существования системы (Больцман 1896г): S = R ln W, где R – универсальная газовая постоянная, а W – вероятность существования системы (число микросостояний, которыми может быть осуществлено данное макросостояние). Энтропия измеряется в Дж/мольּK и энтропийных единицах (1э.е. =1Дж/мольּK).

Потенциал Гиббса (G) или изобарно-изотермический потенциал. Эта функция состояния системы получила название движущей силы химической реакции. Потенциал Гиббса связан с энтальпией и энтропией соотношением:

∆G = ∆H – T ∆S , где T температура в K.

6.4 Законы термохимии. Термохимические расчеты.

Закон Гесса (Герман Иванович Гесс 1840): тепловой эффект химической реакции не зависит от пути по которому идет процесс, а зависит от начального и конечного состояния системы.

Закон Лавуазье-Лапласа : тепловой эффект прямой реакции равен тепловому эффекту обратной с противоположным знаком.

Закон Гесса и следствия из него используют для расчетов изменения энтальпии, энтропии, потенциала Гиббса при химических реакциях:

∆H = ∑∆H 0 298 (прод.) - ∑∆H 0 298 (исход.)

∆S = ∑S 0 298 (прод.) - ∑S 0 298 (исход.)

∆G = ∑∆G 0 298 (прод.) - ∑∆G 0 298 (исход.)

Формулировка следствия из закона Гесса для расчета изменения энтальпии реакции: иэменения энтальпии реакции равно сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрии.

∆H 0 298 – стандартная энтальпия образования (количество теплоты, которое выделяется или поглощается при образовании 1 моля вещества из простых веществ при стандартных условиях). Стандартные условия: давление 101,3 кПа и температура 25 0 C.

Принцип Бертло-Томсена : все самопроизвольно протекающие химические реакции идут с уменьшением энтальпии. Этот принцип работает при низких температурах. При высоких температурах могут протекать реакции с увеличением энтальпии.

Более общим критерием возможности протекания процесса является потенциал Гиббса: ∆G < 0 - процесс возможен, ∆G > 0 - процесс невозможен, ∆G = 0, в системе равновесие (возможен прямой и обратный процесс).

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!