Образовательный портал - Varnavinschool

Период колебаний длина волны скорость распространения волны. Длина волны

Рассмотрим более подробно процесс передачи колебаний от точки к точке при распространении поперечной волны. Для этого обратимся к рисунку 72, на котором показаны различные стадии процесса распространения поперечной волны через промежутки времени, равные ¼Т.

На рисунке 72, а изображена цепочка пронумерованных шариков. Это модель: шарики символизируют частицы среды. Будем считать, что между шариками, как и между частицами среды, существуют силы взаимодействия, в частности при небольшом удалении шариков друг от друга возникает сила притяжения.

Рис. 72. Схема процесса распространения в пространстве поперечной волны

Если привести первый шарик в колебательное движение, т. е. заставить его двигаться вверх и вниз от положения равновесия, то благодаря силам взаимодействия каждый шарик в цепочке будет повторять движение первого, но с некоторым запаздыванием (сдвигом фаз). Это запаздывание будет тем больше, чем дальше от первого шарика находится данный шарик. Так, например, видно, что четвёртый шарик отстаёт от первого на 1/4 колебания (рис. 72, б). Ведь когда первый шарик прошёл 1/4 часть пути полного колебания, максимально отклонившись вверх, четвёртый шарик только начинает движение из положения равновесия. Движение седьмого шарика отстаёт от движения первого на 1/2 колебания (рис. 72, в), десятого - на 3/4 колебания (рис. 72, г). Тринадцатый шарик отстаёт от первого на одно полное колебание (рис. 72, д), т. е. находится с ним в одинаковых фазах. Движения этих двух шариков совершенно одинаковы (рис. 72, е).

  • Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны

Длина волны обозначается греческой буквой λ («ламбда»). Расстояние между первым и тринадцатым шариками (см. рис. 72, е), вторым и четырнадцатым, третьим и пятнадцатым и так далее, т. е. между всеми ближайшими друг к другу шариками, колеблющимися в одинаковых фазах, будет равно длине волны λ.

Из рисунка 72 видно, что колебательный процесс распространился от первого шарика до тринадцатого, т. е. на расстояние, равное длине волны λ, за то же время, за которое первый шарик совершил одно полное колебание, т. е. за период колебаний Т.

где λ - скорость волны.

Поскольку период колебаний связан с их частотой зависимостью Т = 1/ν , то длина волны может быть выражена через скорость волны и частоту:

Таким образом, длина волны зависит от частоты (или периода) колебаний источника, порождающего эту волну, и от скорости распространения волны.

Из формул для определения длины волны можно выразить скорость волны:

V = λ/T и V = λν.

Формулы для нахождения скорости волны справедливы как для поперечных, так и для продольных волн. Длину волны X, при распространении продольных волн можно представить с помощью рисунка 73. На нём изображена (в разрезе) труба с поршнем. Поршень совершает колебания с небольшой амплитудой вдоль трубы. Его движения передаются прилегающим к нему слоям воздуха, заполняющего трубу. Колебательный процесс постепенно распространяется вправо, образуя в воздухе разрежения и сгущения. На рисунке даны примеры двух отрезков, соответствующих длине волны λ. Очевидно, что точки 1 и 2 являются ближайшими друг к другу точками, колеблющимися в одинаковых фазах. То же самое можно сказать про точки 3 и 4.

Рис. 73. Образование продольной волны в трубе при периодическом сжатии и разрежении воздуха поршнем

Вопросы

  1. Что называется длиной волны?
  2. За какое время колебательный процесс распространяется на расстояние, равное длине волны?
  3. По каким формулам можно рассчитать длину волны и скорость распространения поперечных и продольных волн?
  4. Расстояние между какими точками равно длине волны, изображённой на рисунке 73?

Упражнение 27

  1. С какой скоростью распространяется волна в океане, если длина волны равна 270 м, а период колебаний равен 13,5 с?
  2. Определите длину волны при частоте 200 Гц, если скорость распространения волны равна 340 м/с.
  3. Лодка качается на волнах, распространяющихся со скоростью 1,5 м/с. Расстояние между двумя ближайшими гребнями волн равно 6 м. Определите период колебаний лодки.

Распространение волн в упругой среде, это распространение деформаций в ней.

Пусть упругому стержню сечением , за время
сообщили импульс равный
. (29.1)

К концу этого промежутка времени сжатие охватит участок длиной (рис.56).

Тогда величина
будет определять скорость распространения сжатия вдоль стержня, т.е. скорость волны. Скорость распространения самих частиц в стержне равна
. Изменение импульса за это время, где масса стержня, охваченная деформацией
и выражение (29.1) примет вид

(29.2)

Учитывая, что по закону Гука
, (29.3)

где - модуль упругости, приравняем силы, выраженные из (29.2) и (29.3), получим

откуда
и скорость распространения продольных волн в упругой среде будет равна

(29.4)

Аналогично можно получить выражение скорости для поперечных волн

(29.5)

где - модуль сдвига.

30 Энергия волны

Пусть волна распространяется вдоль оси х со скоростью . Тогда смещениеS колеблющихся точек относительно положения равновесия

. (30.1)

Энергия участка среды (с объемом
и массой
), в которой распространяется эта волна, будет складываться из кинетической и потенциальной энергий, т.е.
.

При этом
где
,

т.е.
. (30.2)

В свою очередь потенциальная энергия этого участка равна работе

по его деформации
. Умножив и разделив

правую часть этого выражения на , получим

где можно заменить на относительную деформацию. Тогда потенциальная энергия примет вид:

(30.3)

Сравнивая (30.2) и (30.3) , замечаем, что обе энергии изменяются в одинаковых фазах, одновременно принимают максимальное и минимальное значения. При колебаниях в среде энергия из одного участка может переходить в другой, но полная энергия элемента объёма
не остаётся постоянной

Учитывая, что для продольной волны в упругой среде
и
, получаем, что полная энергия

(30.5)

пропорциональна квадратам амплитуды и частоты, а также плотности среды, в которой распространяется волна.

Введем понятие плотности энергии -. Для элементарного объёма
эта величина равна
. (30.6)

Среднее значение плотности энергии для времени одного периода будет равно
так как среднее значение
за это время равно 1/2.

Учитывая, что энергия не остается в данном элементе среды, а переносится волной от одного элемента к другому, можно ввести понятие потока энергии, численно равного энергии, переносимой через единицу поверхности за единицу времени. Так как энергия
, то среднее значение потока энергии

. (30.7)

Плотность потока сквозь поперечное сечение определяется как

, а так как скорость есть величина векторная, то и плотность потока - то же вектор
, (30.8)

получивший название - “вектор Умова”.

31 Отражение волн. Стоячие волны

Волна, проходящая через границу раздела двух сред, частично проходит через неё, частично отражается. Этот процесс зависит от соотношения плотностей сред.

Рассмотрим два предельных случая:

а) Вторая среда менее плотная (т.е. упругое тело имеет свободную границу);

б) Вторая среда более плотная (в пределе отвечает неподвижно закреплённому концу упругого тела);

а) Пусть левый конец стержня связан с источником колебаний, правый – свободен (рис.57, а ). Когда деформация достигнет правого конца, он, в результате возникшего слева сжатия получит ускорение вправо.При этом, в силу отсутствия среды справа, это движение не вызовет никакого дальнейшего сжатия. Деформация слева будет умень-шаться, а скорость движения – расти. При

В силу инерции конца стержня движение в момент исчезновения деформации не прекратится. Оно будет продолжаться с замедлением, вызывая деформацию растяжения, которая будет распространяться справа налево.

То есть, в точке отражения за приходящим сжатием следует уходящее растяжение, как и в свободно распространяющейся волне. Это

значит, что при отражении волны от менее плотной среды, ни какого

изменения фазы её колебаний в точке отражения не происходит.

б) Во втором случае, когда правый конец упругого стержня закреплён неподвижно, дошедшая до него деформация сжатия не может привести этот конец в движение (рис.57, б ). Возникшее сжатие начнёт распространяться влево. При гармонических колебаниях источника за деформацией сжатия будет следовать деформация растяжения. А при отражении от закреплённого конца за сжатием в приходящей волне будет следовать опять – таки деформация сжатия в отраженной волне.

То есть процесс происходит так, как будто в точке отражения теряется полволны, другими словами, фаза колебаний меняется на противоположную (на ). Во всех промежуточных случаях картина отличается только тем, что амплитуда отражённой волны будет меньше, ибо часть энергии уходит во вторую среду.

При непрерывной работе источника волн, волны, идущие от него, будут складываться с отраженными. Пусть их амплитуды одинаковы, а начальные фазы равны нулю. При распространении волн вдоль оси , их уравнения

(31.1)

В результате сложения колебания будут происходить по закону

В этом уравнении два первых сомножителя представляют собой амплитуду результирующего колебания
, зависящую от положения точек на осих
.

Получили уравнение, называемое уравнением стоячей волны
(31.2)

Точки, для которых амплитуда колебаний максимальна

(
), называются пучностями волны; точки, для которых амплитуда минимальна (
), называются узлами волны.

Определим координаты пучностей. При этом

при

Откуда координаты пучностей
. Расстояние между соседними пучностями -и
будет равно

, т.е. половине длины волны.

Определим координаты узлов. При этом
, т.е. должно выполняться условие
при

Откуда координаты узлов
, расстояние между соседними узлами равно половине длины волны, а между узлом и пучностью
- четверти волны. Так как
при переходе через нуль, т.е. узел, меняет значение с
на
, то смещение точек или их амплитуды по разные стороны от узла имеют одинаковое значения, но разные направления. Так как
имеет одинаковое значение в данный момент времени для всех точек волны, то все точки, находящиеся между двумя узлами, колеблются в одинаковых фазах, а по обе стороны узла в противоположных фазах.

Эти признаки являются отличительными признаками стоячей волны от бегущей, у которой все точки имеют одинаковые амплитуды, но колеблются в разных фазах.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Поперечная волна распространяется вдоль упругого шнура со скоростью
. Период колебания точек шнура
амплитуда

Определить: 1) длину волны , 2) фазуколебаний, смещение, скоростьи ускорениеточки, отстоящей на расстоянии

от источника волн в момент времени
3) разность фаз
колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях
и
.

Решение. 1) Длиной волны называется наименьшее расстояние между точками волны, колебания которых отличаются по фазе на

Длина волны равна расстоянию, которое волна проходит за один период, и находится как

Подставив числовые значения, получим

2) Фаза колебаний, смещение, скорость и ускорение точки могут быть найдены с помощью уравнения волны

,

y смещение колеблющейся точки, х – расстояние точки от источника волн, - скорость распространения волн.

Фаза колебаний равна
или
.

Смещение точки определим, подставив в уравнение волны числовые

значения амплитуды и фазы

Скорость точки является первой производной от смещения по времени, поэтому

или

Подставив числовые значения, получим

Ускорение есть первая производная от скорости по времени, поэтому

После подстановки числовых значений найдём

3) Разность фаз колебаний
двух точек волны связана с расстоянием
между этими точками (разностью хода волны) соотношением

Подставив числовые значения, получим

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Как объяснить распространение колебаний в упругой среде? Что такое волна?

2. Что называется поперечной волной, продольной волной? Когда они возникают?

3. Что такое волновой фронт, волновая поверхность?

4. Что называется длиной волны? Какова связь между длиной волны, скоростью и периодом?

5. Что такое волновое число, фазовая и групповая скорости?

6. В чём заключается физический смысл вектора Умова?

7. Какая волна является бегущей, гармонической, плоской, сферической?

8. Каковы уравнения этих волн?

9. Когда на струне образуется стоячая волна, колебания прямой и отраженной волн в узлах взаимно гасятся. Означает ли это, что исчезает энергия?

10. Две волны, распространяющиеся навстречу друг другу, отличаются только амплитудами. Образуют ли они стоячую волну?

11. Чем стоячая волна отличается от бегущей?

12. Чему равно расстояние между двумя соседними узлами стоячей волны, двумя соседними пучностями, соседними пучностью и узлом?

В ходе урока вы сможете самостоятельно изучить тему «Длина волны. Скорость распространения волны». На этом уроке вы сможете познакомиться с особенными характеристиками волн. В первую очередь вы узнаете, что такое длина волны. Мы рассмотрим ее определение, способ ее обозначения и измерения. Затем мы также подробно рассмотрим скорость распространения волны.

Для начала вспомним, что механическая волна – это колебание, которое распространяется с течением времени в упругой среде. Раз это колебание, волне будут присущи все характеристики, которые соответствуют колебанию: амплитуда, период колебания и частота.

Кроме этого, у волны появляются свои особые характеристики. Одной из таких характеристик является длина волны . Обозначается длина волны греческой буквой (лямбда, или говорят «ламбда») и измеряется в метрах. Перечислим характеристики волны:

Что такое длина волны?

Длина волны - это наименьшее расстояние между частицами, совершающими колебание с одинаковой фазой.

Рис. 1. Длина волны, амплитуда волны

Говорить о длине волны в продольной волне сложнее, потому что там пронаблюдать частицы, которые совершают одинаковые колебания, гораздо труднее. Но и там есть характеристика - длина волны , которая определяет расстояние между двумя частицами, совершающими одинаковое колебание, колебание с одинаковой фазой.

Также длиной волны можно назвать расстояние, пройденное волной, за один период колебания частицы (рис. 2).

Рис. 2. Длина волны

Следующая характеристика - это скорость распространения волны (или просто скорость волны). Скорость волны обозначается так же, как и любая другая скорость, буквой и измеряется в . Как наглядно объяснить, что такое скорость волны? Проще всего это сделать на примере поперечной волны.

Поперечная волна - это волна, в которой возмущения ориентированы перпендикулярно направлению ее распространения (рис. 3).

Рис. 3. Поперечная волна

Представьте себе летящую над гребнем волны чайку. Ее скорость полета над гребнем и будет скоростью самой волны (рис.4).

Рис. 4. К определению скорости волны

Скорость волны зависит от того, какова плотность среды, каковы силы взаимодействия между частицами этой среды. Запишем связь между скоростью волны, длиной волны и периодом волны: .

Скорость можно определить, как отношение длины волны, расстояние, пройденное волной за один период, к периоду колебания частиц среды, в которой распространяется волна. Кроме этого, вспомним, что период связан с частотой следующим соотношением:

Тогда получим соотношение, которое связывает скорость, длину волны и частоту колебаний: .

Мы знаем, что волна возникает в результате действия внешних сил. Важно заметить, что при переходе волны из одной среды в другую изменяются ее характеристики: скорость движения волн, длина волны. А вот частота колебания остается прежней.

Список литературы

  1. Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. - 2-е издание передел. - X.: Веста: издательство «Ранок», 2005. - 464 с.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, Е.М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300 с.
  1. Интернет-портал «eduspb» ()
  2. Интернет-портал «eduspb» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

>>Физика: Скорость и длина волны

Каждая волна распространяется с какой-то скоростью. Под скоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется . При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Направление распространения воины

Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней :

Выбрав направление распространения волны за направление оси х и обозначив через у координату колеблющихся в волне частиц, можно построить график волны . График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45.

Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны.

Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т.е. Т=1/v , можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней .

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна.При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

??? 1. Что понимают под скоростью волны? 2. Что такое длина волны? 3. Как длина волны связана со скоростью и периодом колебаний в волне? 4. Как длина волны связана со скоростью и частотой колебаний в волне? 5. Какие из следующих характеристик волны изменяются при переходе волны из одной среды в другую: а) частота; б) период; в) скорость; г) длина волны ?

Экспериментальное задание . Налейте воду в ванну и посредством ритмичных касаний воды пальцем (или линейкой) создайте на ее поверхности волны. Используя разную частоту колебаний (например, касаясь воды один и два раза в секунду), обратите внимание на расстояние между соседними гребнями волн. При какой частоте колебаний длина волны больше?

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Полный список тем по классам, тесты физика бесплатно, календарный план согласно школьной программы физика, курсы и задания с физики для 8 класса, библиотека рефератов , готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Под скоростью волны понимают ско-рость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с .

Скорость волны определяется свойствами среды, в которой эта волна распространяется. При переходе волны из одной среды в другую ее скорость изменяется.

Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны — величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней:

где v — скорость волны, Т — период колебаний в волне, λ (греческая буква лямбда) — длина волны.

Формула выражает связь длины волны с ее скоростью и периодом. Учитывая, что пери-од колебаний в волне обратно пропорционален частоте v , т. е. Т = 1/ v , можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

,

откуда

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.

Длина волны — это пространственный период волны. На графике волны (рис. выше) длина волны определяется как расстояние между двумя ближайшими точками гармонической бегущей волны , находящимися в одинаковой фазе колебаний. Это как бы мгновенные фотогра-фии волн в колеблющейся упругой среде в моменты времени t и t + Δt . Ось х совпадает с направле-нием распространения волны, на оси ординат отложены смещения s колеблющихся частиц среды.

Частота колебаний в волне совпадает с частотой колебаний источника, т. к. колебания час-тиц в среде являются вынужденными и не зависят от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!