Образовательный портал - Varnavinschool

Никель в периодической системе. Никель - это что такое? Свойства никеля

Открытие долго оспаривалось: современники полагали, что никель - это не самостоятельный металл, а сплав уже известных металлов с мышьяком и серой. Кронстедт настаивал на индивидуальности никеля, ссылаясь в качестве «вещественных доказательств», в частности, на зеленую окраску его соединений и легкость взаимодействия этого «полуметалла» с серой . Кронстедту приходилось бороться не только с физико-химическими, но и с астрологическими доводами своих оппонентов. «Число металлов превосходит уже число планет, в солнечном круге находящихся, - писал Кронстедт, - поэтому ныне размножения числа металлов опасаться не надлежит».

Но Кронстедт умер в 1765 г., так и не дождавшись признания своего открытия. И даже через 10 лет после его смерти во Французской энциклопедии, высшем своде знаний эпохи, было напечатано: «Кажется, что еще должны быть проведены дальнейшие опыты, чтобы убедить пас, есть ли этот королек «никеля», о котором говорит г. Кронстедт, особый полуметалл или его скорее следует считать соединением железа , мышьяка, висмута , кобальта и даже меди с серой».

В том же 1775 г. соотечественник Кронстедта химик и металлург Т. Бергман опубликовал свои исследования, которые убедили многих в том, что никель действительно новый металл. Но окончательно споры улеглись лишь в начале XIX в., когда нескольким крупным химикам впервые удалось выделить чистый никель. Среди них был Ж. Л. Пруст, автор закона постоянства состава химических соединений; интересно, что важным аргументом в пользу индивидуальности никеля Пруст считал своеобразный сладковатый вкус раствора никелевого купороса, резко отличный от неприятного вкуса медного купороса. Другой французский химик, Л. Ж. Тенар, окончательно выяснил магнитные свойства никеля (на их своеобразие указывал еще Бергман).

Полувековые усилия исследователей были подытожены Иеремией Рихтером, который более известен в истории химии как один из основоположников стехиометрии. Чтобы получить чистый никель, Рихтер после обжига купферникеля NiAs на воздухе (для удаления большей части мышьяка), восстановления углем и растворения королька в кислоте проделал 32 перекристаллизации никелевого купороса и затем из этих кристаллов восстановил чистый металл. Полученный этим «весьма многотрудным путем» никель был описан Рихтером в 1804 г. в статье «Об абсолютно чистом никеле, благородном металле, его получении и особых свойствах».

В историю элемента № 28 статья Рихтера вошла как пророческая: в ней были указаны почти все характерные особенности никеля, сделавшие его одним из главнейших металлов современной техники, - большая сопротивляемость коррозии, жаростойкость, высокая пластичность и ковкость, магнитные свойства. Эти особенности и определили пути, по которым никель был направлен человеком.

Металлический никель...

Первые применения никелю придумали ювелиры. Спокойный светлый блеск никеля (вспомним Маяковского: «Облил булыжники лунный никель») не меркнет на воздухе. К тому же никель сравнительно легко обрабатывается. Поэтому его стали применять для изготовления украшений, предметов утвари и звонкой монеты.

Но и это весьма незначительное поле деятельности элемент № 28 получил не сразу, потому что никель, который выплавляли металлурги, был совсем не похож на благородный металл, описанный Рихтером. Он был хрупок и практически непригоден для обработки.

Позже выяснилось, что ничтожной (по нормам столетней давности) примеси серы - лишь 0,03% - достаточно, чтобы вконец испортить механические свойства никеля; происходит это из-за того, что тончайшая пленка хрупкого сернистого никеля разъединяет зерна металла, нарушает его структуру. Примерно так же действует на свойства этого металла и кислород .

Проблему получения ковкого никеля решило одно открытие. Присадка магния в расплавленный металл перед разливкой освобождает никель от примесей: магний активно связывает, «принимает на себя» серу и кислород. Это открытие было сделано еще в 70-х годах позопрошлого века, и с тех пор спрос на никель стал расти.

Вскоре выяснилось, что элемент № 28 - не только декоративный металл (хотя никелированием как средством защиты других металлов от коррозии и для декоративны целей пользуются уже около ста лет). Никель оказался и одним из самых перспективных материалов для изготовления химической аппаратуры, которая должна выдерживать разъедающее действие концентрированных рассолов, горячих щелочей, расплавленных солей, фтора , хлора , брома и других агрессивных сред. Химическую пассивность этот металл сохраняет и при нагреве; жаростойкость проложила никелю дорогу в реактивную технику.

Уникальную совокупность свойств увидели в никеле конструкторы электровакуумных приборов. Не случайно больше трех четвертей всего металла, расходуемого электровакуумной техникой, приходится на чистый никель; из него изготовляют проволочные держатели, вводы, сетки, аноды, экраны, керны для оксидных катодов и ряд других деталей.

Здесь наряду с коррозионной и тепловой стойкостью никеля, его пластичностью и прочностью очень ценится низкая упругость пара: при рабочей температуре около 750°С объем электронной лампы насыщается ничтожным количеством никеля - порядка 10-12 г, которое не нарушает глубокого вакуума.

Магнитные свойства никеля

Во многих отношениях замечательны магнитные свойства никеля. В 1842 г. Дж. П. Джоуль описал увеличение длины стальных прутков при намагничивании. Через 35 лет физики добрались и до химических собратьев железа - кобальта и никеля . И тут оказалось, что кобальтовые прутки тоже удлиняются в магнитном поле, а у никеля этот замечательный эффект не обнаруживается. Еще через несколько лет (в 1882 г.) выяснилось, что никель не только не удлиняется, а, наоборот, даже укорачивается в магнитном поле. Явление было названо магнитострикцией. Сущность его состоит в том, что при наложении внешнего магнитного поля беспорядочно расположенные микромагнитики металла (домены) выстраиваются в одном направлении, деформируя этим кристаллическую решетку. Эффект обратим: приложение механического напряжения к металлу меняет его магнитные характеристики.

Поэтому механические колебания в ферромагнитных материалах затухают гораздо быстрее, чем в неферромагнитных: энергия колебаний расходуется на изменение состояния намагниченности. Понимание природы этого «магнитомеханического затухания» позволило создать не боящиеся усталости сплавы для лопаток турбин и многих других деталей, подвергающихся вибрации.

Но, пожалуй, еще важнее другая область применения магнитомеханических явлений: стерженек из никеля в переменном магнитном поле достаточной частоты становится источником ультразвука. Раскачивая такой стерженек в резонансе (для этого подбирают соответствующую длину), достигают колоссальной для ультразвуковой техники амплитуды колебаний - 0,01% от длины стержня.

Никелевые магнитострикторы были применены, между прочим, при никелировании в ультразвуковом поле: благодаря ультразвуку получаются чрезвычайно плотные и блестящие покрытия, причем скорость их нанесения может быть гораздо выше, чем без озвучивания. Так «никель сам себе помогает».

Никель обнаружен в железных метеоритах. «Масса самородного железа в 71 венский фунт весом, которая выпала на воздуха на глазах у нескольких очевидцев в шесть часов пополудни 26 мая 1751 г. близ деревни Грашина в Хорватии и зарылась в землю на три сажени на незадолго до того вспаханном поле»

Ультразвук имеет и множество других применений. Однако никто, по-видимому, не исследовал воздействия быстропеременного магнитного поля на реакции с участием металлического никеля: вызванная магнитострикцией пульсация поверхности должна была бы существенно повлиять на химическое взаимодействие, так что изучение реакции «звучащего» металла может выявить новые неожиданные эффекты.

Никель и его сплавы

Обратимся теперь к сплавам никеля. Но лучше сказать вернемся: ведь история применения никеля началась со сплавов: одни - железоникелевые - человек получил в готовом виде, другие - медноникелевые - он научился выплавлять из природных руд, еще не зная, какие металлы в них входят.

А сейчас промышленность использует несколько тысяч сплавов, в которые входит никель, хотя и в наше время сочетания железо - никель и медь - никель, предоставленные нам самой природой, остаются основой подавляющего большинства никельсодержащих сплавов. Но, наверное, самое важное - это не количество и разнообразие этих сплавов, а то, что в них человек сумел усилить и развить нужные нам свойства никеля.

Известно, например, что твердые растворы отличаются большей прочностью и твердостью, чем их компоненты, но сохраняют их пластичность. Поэтому металлические материалы, подлежащие обработке посредством ковки, прокатки, протяжки, штамповки и т. п., создают на основе систем, компоненты которых образуют между собой твердые растворы. Именно таковы сплавы никеля с медью: оба металла полностью смешиваются в любых пропорциях как в жидком состоянии, так и при затвердевании расплава. Отсюда - прекрасные механические свойства медно-никелевых сплавов, известные еще древним металлургам.

Праотец многочисленного рода этих сплавов - «пакт-хонг» (или «пекфонг»), который выплавляли в Китае, возможно до нашей эры, дожил до наших дней. Он состоит из меди, никеля (20%) и цинка, причем цинк играет здесь в основном ту же роль, что и магний при приготовлении ковкого никеля. Этот сплав в небольших количествах начали получать в Европе еще в первой половине XIX в. под названиями аргентан, немецкое серебро , нейзильбер (новое серебро) и массой других, причем почти все эти названия подчеркивали красивый - серебряный - внешний вид сплава. Никель обладает интересной «отбеливающей способностью»: уже 20% его полностью гасят красный цвет меди.

«Новое серебро» успешно конкурировало со старым, завоевав популярность у ювелиров. Применили его и для чеканки монет. В 1850 г. Швейцария выпустила первые монеты из нейзильбера, и вскоре ее примеру последовали почти все страны. Американцы даже называют свои пятицентовые монетки «nickel». Масштабы этого применения медноникелевых сплавов огромны: столбик из «никелевых» монет, которые изготовлены в мире за 100 с небольшим лет, достиг бы Луны!

Ныне нейзильбер и родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1% марганца) применяются не только и не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов!) против ударной, или струевой, коррозии. Это отличный материал для кранов, клапанов и особенно конденсаторных трубок.

А вот более молодой сплав меди и никеля - дитя случая и находчивости. В начале XX в. возникли осложнения при переработке богатых канадских руд, содержавших вдвое больше никеля, чем меди; разделение этих двух металлов было твердым орешком для металлургов. Полковник Амброз Монель, тогдашний президент Международной никелевой компании, подал смелую мысль - не разделять медь и никель, а выплавлять их совместно в «натуральный сплав». Инженеры осуществили эту идею - и получился знаменитый монель-металл - один из главнейших сплавов химического машиностроения. Сейчас создано много марок монель-металла, различающихся природой и количеством легирующих добавок, но основа во всех случаях прежняя - 60-70% никеля и 28-30% меди. Высокая химическая стойкость, блестящие механические свойства и сравнительная дешевизна (его и сейчас выплавляют без предварительного разделения меди и никеля) создали монель-металлу славу среди химиков, судостроителей, текстильщиков, нефтяников и даже парфюмеров.

Если монель-металл - «натуральный сплав» из сульфидных медноникелевых руд, то ферроникель - естественный продукт плавки окисленных руд никеля. Отличие состоит в том, что» зависимости от условии плавки в этом продукте можно широко менять соотношение никеля и железа (большую часть железа переводят в шлак). Ферроникель различного состава используют затем в качестве полупродукта для получения многих марок стали и других железоникелевых сплавов.

Видманштеттова структура. В 1808 г. директор Промышленного музея в Вене Алоиз фон Вндманштеттен, получив от своего друга образцы железных метеоритов, отполировал их и протравил азотной кислотой. Возникли изящные линии травления, отражающие характерную структуру сплава

Таких сплавов великое множество. Всем хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. На них уходит почти половина всего никеля, добываемого человеком. Инконель - «аристократический родственник» нержавеющих сталей, в котором железа почти не осталось, это сплав (точнее, группа сплавов на основе никеля и хрома с добавками титана и других элементов. Инконель стал одним из главных материалов ракетной техники. Нихром (20% Cr, 80% Ni) - важнейший из сплавов сопротивления, основа большинства электронагревательных приборов, от домашних электроплиток до мощных промышленных печей. Менее известны элинвар (45% Ni, 55% Fe; легирующие добавки - Cr, Mo, W), сохраняющий постоянную упругость при различных температурах, и платинит (49% Ni, 51% Fe). Последний не содержит платины , но во многих случаях заменяет ее. Как и платину, его можно впаять в стекло, и спай не треснет, поскольку коэффициенты теплового расширения стекла и платинита совпадают. У инвара (36% Ni, 64% Fe) коэффициент теплового расширения близок к нулю.

Особый класс составляют магнитные сплавы. Пожалуй, наибольшие заслуги здесь принадлежат пермаллою FeNi 3 - сплаву с феноменальной магнитной проницаемостью, перевернувшему технику слабых токов. Сердечники из пермаллоя есть в любом телефонном аппарате, а тонкие пермаллойные пленки - главный элемент запоминающих устройств вычислительных машин.

Двигатель американской ракеты «Атлас», работающий при 3200°C, выдерживает эту температуру благодари сотням маленьких никелевых трубок толщиной всего 0,3 мм, образующих стенки камеры сгорания. По этим трубкам проходит жидкое топливо, охлаждающее стенки и само при этом подогревающееся.

Шел 1751 год. В маленькой Швеции благодаря ученому Акселю Фредерику Крондстедту появился элемент под номером 17. На тот момент было всего 12 известных металлов, плюс сера, фосфор, углерод и мышьяк. Они и приняли к себе в компанию новенького, название ему - никель.

Немного истории

За много лет до этого чудесного открытия горняки из Саксонии были знакомы с рудой, которую можно было принять за Попытки извлечь из этого материала медь были тщетными. Почувствовав себя обманутыми, руду стали называть "купферникель" (по-русски - "медный дьявол").

Этой рудой заинтересовался эксперт по минералам Крондстедт. После долгих трудов получился новый металл, который и назвали никелем. Эстафету по исследованию перехватил Бергман. Он еще больше очистил металл и пришел к заключению, что данный элемент напоминает железо.

Физические свойства никеля

Никель входит в десятую группу элементов и находится в четвертом периоде таблицы Менделеева под атомным номером 28. Если в таблице вы уведете символ Ni, это и есть никель. Он имеет оттенок желтый, на серебристой основе. Даже на воздухе металл не становится блеклым. Твердый и достаточно вязкий. Хорошо поддается ковке, благодаря чему можно изготовить очень тонкие изделия. Прекрасно полируется. Никель можно притянуть с помощью магнита. Даже при температуре 340 градусов со знаком минус просматриваются магнитные особенности никеля. Никель - это металл, стойкий к коррозии. Он проявляет слабую химическую активность. Что можно сказать про химические свойства никеля?

Химические свойства

Что необходимо для определения качественного состава никеля? Здесь следует перечислить из каких атомов (а именно их количества) состоит наш металл. Молярная масса (ее еще называют атомной массой) равна 58,6934 (г/моль). С измерениями продвинулись дальше. Радиус атома нашего металла 124 пм. При измерении радиуса иона, результат показал (+2е) 69 пм, а число 115 пм - это ковалентный радиус. По шкале известного кристаллографа и великого химика Полинга, электроотрицательность равна 1,91, а потенциал электронный - 0,25 В.

Действия воздуха и воды на никель практически ничтожны. То же можно сказать и о щелочи. Почему этот металл так реагирует? На его поверхности создается NiO. Это покрытие в виде пленки, которая не дает окисляться. Если никель раскалить до очень высокой температуры, тогда он начинает проявлять реакцию с кислородом, а также воздействует с галогенами, причем со всеми.

Если никель попадет в азотную кислоту, то реакция не заставит себя ждать. Также он охотно активизируется в растворах с содержанием аммиака.

Но не вся кислота действует на никель. Такие кислоты, как соляная и серная, растворяют его очень медленно, но верно. А попытки проделать то же самое с никелем в фосфорной кислоте вообще не увенчались успехом.

Никель в природе

Домыслы ученых заключаются в том, что ядро нашей планеты — это сплав, в котором железа содержится 90 %, а никеля в 10 раз меньше. Есть наличие кобальта - 0,6 %. В процессе вращения в слой земного покрытия выбрались атомы никеля. Они-то и являются основателями сульфидно медно-никелевых руд, вместе с медью, серой. Некоторые более смелые атомы никеля на этом не остановились и пробивали дорогу дальше. На поверхность атомы стремились в компании с хромом, магнием, железом. Далее попутчики нашего металла окислялись и отсоединялись.

На поверхности земного шара имеют место кислые породы и ультраосновные. По наблюдению ученых, содержание никеля в кислых породах гораздо ниже, чем в ультраосновных. Поэтому почва и растительность там достаточно хорошо обогащены никелем. А вот путешествие обсуждаемого героя в биосфере и воде оказалось не так заметно.

Никелевые руды

Промышленно-никелевые руды делятся на два типа.

  1. Сульфидные медно-никелевые. Минералы: магний, пирротин, кубанит, милерит, петландит, сперрилит - вот что содержится в этих рудах. Спасибо магме, которая их образовала. Из сульфидных руд можно также получить палладий, золото и многое другое.
  2. Силикатные никелевые руды. Они неплотные, похожие на глину. Руды этого типа бывают железистые, кремнистые, магнезиальные.

Где применяется никель

Обширно никель применяется в такой мощной отрасли, как металлургия. А именно в изготовлении самых разнообразных сплавов. В основном в сплав входит железо, никель и кобальт. Существует много сплавов, в основу которых входит именно никель. Соединяется наш металл в сплав, например, с титаном, хромом, молибденом. Никель также используется, чтобы защитить продукцию, которая быстро подвергается коррозии. Эту продукцию никелируют, то есть создают специальное никелевое покрытие, которое не дает коррозии сделать свое противное дело.

Никель - это очень хороший катализатор. Поэтому он активно используется в химической промышленности. Это приборы, химпосуда, аппараты для различного применения. Для химреагентов, продовольствия, доставки щелочей, хранения эфирных масел используют цистерны и резервуары из никелевых материалов. Без этого металла не обходятся в атомной технике, телевидении, в самых разных приборах, список которых очень длинный.

Если заглянуть в такую сферу, как приборостроение, а следом в сферу машиностроения, то можно заметить, что аноды и катоды - это никелевые листы. И это далеко не весь перечень применения такого просто чудесного металла. Не стоит преуменьшать значение никеля и в медицине.

Никель в медицине

Никель в медицине используется очень широко. Для начала возьмем инструменты, необходимые для проведения операции. Результат операции зависит не только от самого врача, но и от качества инструмента, которым он работает. Инструменты подвергаются многочисленным стерилизациям, и если они изготовлены из сплава, в который не входит никель, то коррозия не заставит себя долго ждать. А инструменты, сделанные из стали, которая содержит никель, гораздо дольше служат.

Если говорить об имплантатах, для их изготовления пускают в ход никелевые сплавы. Никельсодержащая сталь обладает высокой степенью прочности. Приспособления для фиксации костей, протезы, винты - все сделано из этой стали. В стоматологии имплантаты тоже заняли свои крепкие позиции. Бюгели, брекеты из нержавеющей стали используют ортодонты.

Никель в живых организмах

Если смотреть на мир снизу-вверх, то картина вырисовывается примерно такая. Под ногами у нас почва. Содержание никеля в ней больше чем в растительности. Но если рассмотреть эту растительность под той призмой, которая нас интересует, то большое содержание никеля находится в бобовых. А в злаковых культурах процент никеля возрастает.

Рассмотрим коротко среднее содержание никеля в растениях, морских и наземных животных. И конечно же, в человеке. Измерение идет в весовых процентах. Итак, масса никеля в растениях 5*10 -5 . Наземные животные 1*10 -6 , морские животные 1,6*10 -4 . И у человека содержание никеля 1-2*10 -6 .

Роль никеля в организме человека

Здоровым и красивым человеком хочется быть всегда. Никель - это один из важных микроэлементов в организме человека. Никель обычно накапливается в легких, почках и печени. Скопления никеля у человека встречается в волосах, щитовидной и поджелудочной железе. И это далеко не все. Чем же занимается металл в организме? Тут можно смело сказать, что он и швец, и жнец, и на дуде игрец. А именно:

  • не без успеха старается помогать обеспечивать клетки кислородом;
  • окислительно-восстановительные работы в тканях тоже ложатся на плечи никеля;
  • не стесняется поучаствовать в регулировании гормонального фона организма;
  • благополучно окисляет витамин С;
  • можно отметить его причастность в обмене жиров;
  • отлично никель влияет на кроветворение.

Хотелось бы отметить огромное значение никеля в клетке. Этот микроэлемент оберегает мембрану клетки и нуклеиновые кислоты, а именно их конструкцию.

Хотя перечень достойных трудов никеля можно продолжить. Из вышеперечисленного заметим, что никель организму необходим. Этот микроэлемент в наше тело поступает через пищу. Обычно никеля в организме хватает, ведь его нужно совсем немного. Тревожные звоночки недостатка нашего металла - это появление дерматита. Вот такое значение никеля в организме человека.

Сплавы из никеля

Существует много разных сплавов из никеля. Отметим основные три группы.

К первой группе относятся сплавы никеля и меди. Они так и называются никель-медные сплавы. В каких бы соотношениях ни сплавляли эти два элемента, результат потрясающий и главное - без неожиданностей. Однородный сплав гарантирован. Если в нем присутствует больше меди, чем никеля, то более ярко выражаются свойства меди, а если преобладает никель, сплав проявляет характер никеля.

Никель-медные сплавы популярны в производстве монет, машинных деталей. Сплав Константин, в котором почти 60 % меди, а остальное никель, используется для того, чтобы создать аппаратуру более высокой точности.

Рассмотрим сплав с никелем и хромом. Нихромы. Устойчивы к коррозии, кислотам, жаропрочные. Такие сплавы применяют для реактивных двигателей, атомных реакторов, но только в том случае, если в них присутствует до 80 % никеля.

Перейдем к третьей группе с железом. Делят их на 4 вида.

  1. Жаропрочный - стойкий к высоким температурам. Такой сплав почти на 50 % содержит никель. Здесь сочетание может быть с молибденом, титаном, алюминием.
  2. Магнитные - увеличивают магнитную проницаемость, часто используют в электротехнике.
  3. Антикоррозийные - без этого сплава не обойтись при производстве химического оборудования, а также при работе в агрессивной среде. В сплав входит молибден.
  4. Сплав, сохраняющий свои размеры и упругость. Термопара в печи. Именно сюда идет такой сплав. При нагревании сохраняются размеры габаритов, и упругость не теряется. Сколько никеля нужно, чтобы сплав был с такими свойствами? Металла в сплаве должно быть приблизительно 40 %.

Никель в быту

Если оглядеться вокруг, то можно понять, что никелевые сплавы окружают человека везде. Начнем с мебели. Сплав защищает основу мебели от повреждений, вредных воздействий. Обратим внимание на фурнитуру. Хоть на оконную, хоть на мебельную. Она может долго эксплуатироваться и очень симпатично смотрится. Продолжим нашу экскурсию в ванную. Здесь без никеля никак. Лейки для душа, кран, смеситель - все это никелированное. Благодаря этому можно забыть, что такое коррозия. И не стыдно посмотреть на изделие, потому что выглядит мило и поддерживает декор. Детали с никелированным покрытием встречаются в декоративных строениях.

Никель никак нельзя назвать второстепенным металлом. Разные минералы и руды могут похвастаться наличием никеля. Радует, что такой элемент присутствует на нашей планете и даже в теле человека. Здесь он играет не последнюю скрипку в кроветворных процессах и даже в ДНК. Обширно используется в технике. Свое главенство никель одержал благодаря химической стойкости при защите покрытий.

Никель - это металл, у которого большое будущее. Ведь в некоторых сферах он незаменим.

Никель – пластичный металл серебристо-белого цвета с характерным блеском. Относится к тяжелым цветным металлам. Никель ценная легирующая добавка. В природе в чистом виде никель не встречается, обычно входит в состав руд. Чистый никель (Nickel/Никель), Nickel 200 и Nickel 201 , добывают путем специальных технологий.

В соединении с другими металлами никель способен образовывать твердые и прочные никелевые сплавы:

  • никель-медный сплав (Monel/Монель) – сплав на медной основе с никелем в качестве легирующей добавки. В составе обычно до 67% никеля и до 38% меди. К этой группе сплавов относят: Monel 400 , Monel 401, Monel 404, Monel R-405 , Monel K-500 и др.
  • никель-хромовый сплав (Inconel/Инконель) – аустенитный жаропрочный сплав. К этой группе относят: Inconel 600 , Inconel 601 , Inconel 617 , Inconel 625 , Inconel 690 , Inconel 718 , Inconel 725 , Inconel X-750 и др.
  • никель-железо-хромовый сплав (Inconloy/Инколой) – возможно добавление в сплав молибдена, меди, титана. К этой группе относят: Incoloy 20, Incoloy 800 , Incoloy 800H , Incoloy 800HT , Incoloy 825 , Incoloy 925 и др.
  • никель-молибденовый сплав (Hastelloy/Хастеллой) – возможно присутствие в составе хрома, железа и углерода. К этой группе относят: Hastelloy C-4 , Hastelloy C-22 , Hastelloy C-276 , Hastelloy B-2 и др.

Свойства никеля

Никель – ферромагнетик, точка Кюри – 358°C, температура плавления – 1455°C, температура кипения – 2730-2915°C. Плотность – 8,9 г/см 3 , коэффициент теплового расширения -13,5∙10 −6 K −1. На воздухе компактный никель – стабилен, а высокодисперсный – пирофорен.

Никель обладает такими свойствами, как:

  • пластичность и ковкость;
  • прочность при высоких температурных режимах;
  • устойчивость к окислению в воде и на воздухе;
  • твердость и достаточная вязкость;
  • высокая коррозионная стойкость;
  • ферромагнетик;
  • хороший катализатор;
  • хорошо полируется.

Поверхность никеля покрыта тонким слоем оксида NiO, защищающим металл от окисления.

Преимущества и недостатки

Главные плюсы никеля и сплавов - жаропрочность, жаростойкость и повышенная механическая прочность (давление до 440 МПа). К достоинствам также можно отнести эксплуатацию в раскаленных концентрированных щелочных и кислотных растворах. Помимо этого никель способен сохранять магнитные свойства при пониженных температурах.

Главным недостатком никеля является значительное снижение показателей термоЭДС при быстром охлаждении после отжига (до 600°C). Также к минусам никеля можно отнести тот факт, что в природе чистый никель не встречается. Его получают путем дорогих технологий, что сказывается на его стоимости.

Область применения

Основная сфера применения никеля – металлургия. В ней он задействован в производстве высоколегированных нержавеющих сталей. Добавляя в расплав железа никель, металлурги получают прочные и пластичные сплавы, которые обладают повышенной коррозионной стойкостью и устойчивостью к высоким температурам. Стоит отметить, что никелевые сплавы сохраняют свои качества при многократном длительном нагревании.

Благодаря этим свойствам нержавеющая и термостойкая никелевая сталь применяется:

  • в пищевой и химической промышленности;
  • в нефтехимической промышленности и строительстве;
  • в медицине и фармацевтике;
  • в авиа- и машиностроении;
  • в изготовлении подводных кабелей;
  • в изготовлении нагревательных элементов промышленного оборудования;
  • в производстве постоянных магнитов;
  • в производстве станков и специального оборудования;
  • в изготовлении интерьерных элементов зданий;
  • в мебельной промышленности;
  • в изготовлении бытовых приборов и домашней утвари;

Благодаря своей пластичности и легкости в ковке из никеля получают очень тонкие изделия, например, полосы, ленты и листы из никеля. Также никель активно используют в производстве проволоки и прутков.

Никель (хим. элемент) Никель (лат. Niccolum), Ni, химический элемент первой триады VIII группы периодической системы Менделеева, атомный номер 28, атомная масса 58,70; серебристо-белый металл, ковкий и пластичный. Природный Н. состоит из смеси пяти стабильных изотопов: 58 Ni (67,76%), 60 Ni (26,16%), 61 Ni (1,25%), 63 Ni (3,66%), 64 Ni (1,16%).

Историческая справка. Металл в нечистом виде впервые получил в 1751 шведский химик А. Кронстедт , предложивший и название элемента. Значительно более чистый металл получил в 1804 немецкий химик И. Рихтер. Название «Н.» происходит от минерала купферникеля (NiAs), известного уже в 17 в. и часто вводившего в заблуждение горняков внешним сходством с медными рудами (нем. Kupfer ‒ медь, Nickel ‒ горный дух, якобы подсовывавший горнякам вместо руды пустую породу). С середины 18 в. Н. применялся лишь как составная часть сплавов, по внешности похожих на серебро. Широкое развитие никелевой промышленности в конце 19 в. связано с нахождением крупных месторождений никелевых руд в Новой Каледонии и в Канаде и открытием «облагораживающего» его влияния на свойства сталей.

Распространение в природе. Н. ‒ элемент земных глубин (в ультраосновных породах мантии его 0,2% по массе). Существует гипотеза, что земное ядро состоит из никелистого железа; в соответствии с этим среднее содержание Н. в земле в целом по оценке около 3%. В земной коре, где Н. 5,8×10-3 %, он также тяготеет к более глубокой, так называемой базальтовой оболочке. Ni в земной коре ‒ спутник Fe и Mg, что объясняется сходством их валентности (II) и ионных радиусов; в минералы двухвалентных железа и магния Н. входит в виде изоморфной примеси. Собственных минералов Н. известно 53; большинство из них образовалось при высоких температурах и давлениях, при застывании магмы или из горячих водных растворов. Месторождения Н. связаны с процессами в магме и коре выветривания. Промышленные месторождения Н. (сульфидные руды) обычно сложены минералами Н. и меди (см. Никелевые руды ). На земной поверхности, в биосфере Н. ‒ сравнительно слабый мигрант. Его относительно мало в поверхностных водах, в живом веществе. В районах, где преобладают ультраосновные породы, почва и растения обогащены никелем.

Физические и химические свойства. При обычных условиях Н. существует в виде b-модификации, имеющей гранецентрированную кубическую решётку (a = 3,5236). Но Н., подвергнутый катодному распылению в атмосфере H2 , образует a-модификацию, имеющую гексагональную решётку плотнейшей упаковки (а = 2,65 , с = 4,32), которая при нагревании выше 200 °С переходит в кубическую. Компактный кубический Н. имеет плотность 8,9 г/см3 (20 °С), атомный радиус 1,24 , ионные радиусы: Ni2+ 0,79 , Ni3+ 0,72 ; tпл 1453 °С; tkип около 3000 °С; удельная теплоёмкость при 20 °С 0,440 кдж/ (кг·К ) ; температурный коэффициент линейного расширения 13,310-6 (0‒100 °С); теплопроводность при 25 °С 90,1 вмl (м·K ); то же при 500 °С 60,01 вм/ (м·К ) . Удельное электросопротивление при 20 °С 68,4 ном·м, т. е. 6,84 мком·см; температурный коэффициент электросопротивления 6,8×10-3 (0‒100 °С).

Н. ‒ ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400‒500 Мн/м2 (т. е. 40‒50 кгс/мм2 ), предел упругости 80 Мн/м2 , предел текучести 120 Мн/м2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м2 ; твёрдость по Бринеллю 600‒800 Мн/м2 . В температурном интервале от 0 до 631 К (верхняя граница соответствует Кюри точке ) Н. ферромагнитен. Ферромагнетизм Н. обусловлен особенностями строения внешних электронных оболочек (3d8 4s2 ) его атомов. Н. вместе с Fe (3d6 4s2 ) и Со (3d7 4s2 ), также ферромагнетиками, относится к элементам с недостроенной 3d-электронной оболочкой (к переходным 3d-металлам). Электроны недостроенной оболочки создают нескомпенсированный спиновый магнитный момент, эффективное значение которого для атомов Н. составляет 6 mБ , где mБ ‒ Бора магнетон . Положительное значение обменного взаимодействия в кристаллах Н. приводит к параллельной ориентации атомных магнитных моментов, т. е. к ферромагнетизму. По той же причине сплавы и ряд соединений Н. (окислы, галогениды и др.) магнитоупорядочены (обладают ферро-, реже ферримагнитной структурой, см. Магнитная структура ). Н. входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой , монель-металл , инвар и др.).

В химическом отношении Ni сходен с Fe и Со, но также и с Cu и благородными металлами. В соединениях проявляет переменную валентность (чаще всего 2-валентен). Н. ‒ металл средней активности, Поглощает (особенно в мелкораздробленном состоянии) большие количества газов (H2 , CO и др.); насыщение Н. газами ухудшает его механические свойства. Взаимодействие с кислородом начинается при 500 °С; в мелкодисперсном состоянии Н. пирофорен ‒ на воздухе самовоспламеняется. Из окислов наиболее важна закись NiO ‒ зеленоватые кристаллы, практически нерастворимые в воде (минерал бунзенит). Гидроокись выпадает из растворов никелевых солей при прибавлении щелочей в виде объёмистого осадка яблочно-зелёного цвета. При нагревании Н. соединяется с галогенами, образуя NiX2 . Сгорая в парах серы, даёт сульфид, близкий по составу к Ni3 S2 . Моносульфид NiS может быть получен нагреванием NiO с серой.

С азотом Н. не реагирует даже при высоких температурах (до 1400 °С). Растворимость азота в твёрдом Н. приблизительно 0,07% по массе (при 445 °С). Нитрид Ni3 N может быть получен пропусканием NH3 над NiF2 , NiBr2 или порошком металла при 445 °С. Под действием паров фосфора при высокой температуре образуется фосфид Ni3 P2 в виде серой массы. В системе Ni ‒ As установлено существование трёх арсенидов: Ni5 As2 , Ni3 As (минерал маухерит) и NiAs. Структурой никель-арсенидного типа (в которой атомы As образуют плотнейшую гексагональную упаковку, все октаэдрические пустоты которой заняты атомами Ni) обладают многие металлиды . Неустойчивый карбид Ni3 C может быть получен медленным (сотни часов) науглероживанием (цементацией) порошка Н. в атмосфере CO при 300 °С. В жидком состоянии Н. растворяет заметное количество С, выпадающего при охлаждении в виде графита. При выделении графита Н. теряет ковкость и способность обрабатываться давлением.

В ряду напряжений Ni стоит правее Fe (их нормальные потенциалы соответственно ‒0,44 в и ‒0,24 в ) и поэтому медленнее, чем Fe, растворяется в разбавленных кислотах. По отношению к воде Н. устойчив. Органические кислоты действуют на Н. лишь после длительного соприкосновения с ним. Серная и соляная кислоты медленно растворяют Н.; разбавленная азотная ‒ очень легко; концентрированная HNO3 пассивирует Н., однако в меньшей степени, чем железо.

При взаимодействии с кислотами образуются соли 2-валентного Ni. Почти все соли Ni (II) и сильных кислот хорошо растворимы в воде, растворы их вследствие гидролиза имеют кислую реакцию. Труднорастворимы соли таких сравнительно слабых кислот, как угольная и фосфорная. Большинство солей Н. разлагается при прокаливании (600‒800 °С). Одна из наиболее употребительных солей ‒ сульфат NiSO4 кристаллизуется из растворов в виде изумруднозелёных кристаллов NiSO4 ×7H2 O ‒ никелевого купороса. Сильные щёлочи на Н. не действуют, но он растворяется в аммиачных растворах в присутствии (NH4 )2 CO3 с образованием растворимых аммиакатов , окрашенных в интенсивно-синий цвет; для большинства из них характерно наличие комплексов 2 + и . На избирательном образовании аммиакатов основываются гидрометаллургические методы извлечения Н. из руд. NaOCI и NaOBr осаждают из растворов солей Ni (II), гидроокись Ni (OH)3 чёрного цвета. В комплексных соединениях Ni, в отличие от Со, обычно 2-валентен. Комплексное соединение Ni с диметилглиоксимом (C4 H7 O2 N)2 Ni служит для аналитического определения Ni.

При повышенных температурах Н. взаимодействует с окислами азота, SO2 и NH3 . При действии CO на его тонкоизмельчённый порошок при нагревании образуется карбонил Ni (CO)4 (см. Карбонилы металлов ). Термической диссоциацией карбонила получают наиболее чистый Н.

Получение. Около 80% Н. от общего его производства (без СССР) получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты. Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения Н. в сульфидный расплав (штейн), содержащий 10‒15% Ni. Обычно электроплавке (основной метод плавки в СССР) предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Сu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni ‒ файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu, и Ni. Никелевый концентрат обжигают в кипящем слое до NiO. Металл получают восстановлением NiO в электрических дуговых печах. Из чернового Н. отливают аноды и рафинируют электролитически. Содержание примесей в электролитном Н. (марка 110) 0,01%.

Для разделения Cu и Ni используют также т. н. карбонильный процесс, основанный на обратимости реакции:

Получение карбонила проводят при 100‒200 атм и при 200‒250 °С, а его разложение ‒ без доступа воздуха при атмосферном давлении и около 200 °С. Разложение Ni (CO)4 используют также для получения никелевых покрытий и изготовления различных изделий (разложение на нагретой матрице).

В современных «автогенных» процессах плавка осуществляется за счёт тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO2 , пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Всё более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно Н. переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением).

Из силикатных (окисленных) руд Н. также может быть сконцентрирован в штейне при введении в шихту плавки флюсов ‒ гипса или пирита. Восстановительно-сульфидирующую плавку проводят обычно в шахтных печах; образующийся штейн содержит 16‒20% Ni, 16‒18% S, остальное ‒ Fe. Технология извлечения Н. из штейна аналогична описанной выше, за исключением того, что операция отделения Cu часто выпадает. При малом содержании в окисленных рудах Со их целесообразно подвергать восстановительной плавке с получением ферроникеля, направляемого на производство стали. Для извлечения Н. из окисленных руд применяют также гидрометаллургические методы ‒ аммиачное выщелачивание предварительно восстановленной руды, сернокислотное автоклавное выщелачивание и др.

Применение. Подавляющая часть Ni используется для получения сплавов с др. металлами (Fe, Сг, Cu и др.), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы (см. Никелевые сплавы ). Сплавы Н. используются в конструкциях атомных реакторов.

Значительное количество Н. расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий Н. в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Н. ‒ весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.

Переработка руд Н. сопровождается выделением ядовитых газов, содержащих SO2 и нередко As2 O3 . Очень токсична CO, применяемая при рафинировании Н. карбонильным методом; весьма ядовит и легко летуч Ni (CO)4 . Смесь его с воздухом при 60 °С взрывается. Меры борьбы: герметичность аппаратуры, усиленная вентиляция.

А. В. Ванюков.


Никель в организме является необходимым микроэлементом . Среднее содержание его в растениях 5,0·10-5 % на сырое вещество, в организме наземных животных 1,0×10-5 %, в морских ‒ 1,6×10-5 %. В животном организме Н. обнаружен в печени, коже и эндокринных железах; накапливается в ороговевших тканях (особенно в перьях). Физиологическая роль Н. изучена недостаточно. Установлено, что Н. активирует фермент аргиназу, влияет на окислительные процессы; у растений принимает участие в ряде ферментативных реакций (карбоксилирование, гидролиз пептидных связей и др.). На обогащенных Н. почвах содержание его в растениях может повыситься в 30 раз и более, что приводит к эндемическим заболеваниям (у растений ‒ уродливые формы, у животных ‒ заболевания глаз, связанные с повышенным накоплением Н. в роговице: кератиты, кератоконъюнктивиты).

И. Ф. Грибовская.


Рипан Р., Четяну И., Неорганическая химия , т. 2 ‒ Металлы , пер. с рум., М., 1972, с. 581‒614; Справочник металлурга по цветным металлам, т. 2 ‒

Никель - простое вещество, пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен. Относится к тяжелым цветным металлам, в чистом виде на земле не встречается — обычно входит в состав различных руд, высокой твердостью, хорошо полируется, является ферромагнетиком — притягивается магнитом, в периодической системе Менделеева обозначается символом Ni и имеет 28 порядковый номер.

Смотрите так же:

СТРУКТУРА

Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 å нм, пространственная группа Fm3m. Эта кристаллическая структура устойчива к давлению, по меньшей мере 70 ГПа. При обычных условиях никель существует в виде b-модификации, имеющей гранецентрированную кубическую решётку (a = 3,5236 å). Но никель, подвергнутый катодному распылению в атмосфере h 2 , образует a-модификацию, имеющую гексагональную решётку плотнейшей упаковки (а = 2,65 å, с = 4,32 å), которая при нагревании выше 200 °С переходит в кубическую. Компактный кубический никель имеет плотность 8,9 г/см 3 (20 °С), атомный радиус 1,24 å

СВОЙСТВА

Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500 Мн/м 2 , предел упругости 80 Мн/м 2 , предел текучести 120 Мн/м 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м 2 ; твёрдость по Бринеллю 600-800 Мн/м 2 . В температурном интервале от 0 до 631К (верхняя граница соответствует Кюри точке). Ферромагнетизм никеля обусловлен особенностями строения внешних электронных оболочек его атомов. Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монель-металл, инвар и др.).

ЗАПАСЫ И ДОБЫЧА

Никель довольно распространён в природе - его содержание в земной коре составляет около 0,01%(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8%). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 - 0,41% Ni.
В растениях в среднем 5·10 −5 весовых процентов никеля, в морских животных - 1,6·10 −4 , в наземных - 1·10 −6 , в человеческом организме - 1…2·10 −6 .

Основную массу никеля получают из гарниерита и магнитного колчедана.
Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5-8% Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
Карбонильный способ (метод Монда): Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением которого выделяют особо чистый металл.
Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al 2 O 3

ПРОИСХОЖДЕНИЕ

Месторождения сульфидных медно-никелевых руд связаны с лополитоподобными или плитообразными массивами расслоенных габброидов, приуроченных к зонам глубинных разломов на древних щитах и платформах. Характерной особенностью медно-никелевых месторождений всего мира является выдержанный минеральный состав руд: пирротин, пентландит, халькопирит, магнетит; кроме них в рудах встречаются пирит, кубанит, полидимит, никелин, миллерит, виоларит, минералы группы платины, изредка хромит, арсениды никеля и кобальта, галенит, сфалерит, борнит, макинавит, валлерит, графит, самородное золото.

Экзогенные месторождения силикатных никелевых руд повсеместно связаны с тем или иным типом коры выветривания серпентенитов. при выветривании происходит стадийное разложение минералов, а также перенос подвижных элементов, с помощью воды из верхних частей коры в нижние. Там эти элементы выпадают в осадок в виде вторичных минералов.
В месторождениях этого типа заключены запасы никеля в 3 раза превышающие его запасы в сульфидных рудах, а запасы некоторых месторождений достигают 1 млн т. и более никеля. Крупные запасы силикатных руд сосредоточены на Новой Каледонии, Филиппинах, Индонезии, Австралии и др. странах. Среднее содержание в них никеля равно 1.1-2%. Кроме того в рудах часто содержится кобальт.

ПРИМЕНЕНИЕ

Подавляющая часть никеля используется для получения сплавов с другими металлами (fe, cr, cu и др.), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы. Сплавы никеля используются в конструкциях атомных реакторов.

Значительное количество никеля расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий никель в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Никель - весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.

Применяется при изготовлении брекет-систем (никелид титана), протезирования. Широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель». Также никель используется для производства обмотки струн музыкальных инструментов.

Никель (англ. Nickel) — Ni

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.08-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.17.2
Dana (8-ое издание) 1.1.11.5
Hey’s CIM Ref 1.61
Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!