Образовательный портал - Varnavinschool

Иррациональные числа и трансцендентные числа. §5

Трансцендентное число — комплексное число, не являющееся алгебраическим, то есть не являющееся корнем никакого отличного от нуля многочлена с рациональными коэффициентами.

Существование трансцендентных чисел впервые установил Ж. Лиувилль в 1844 г.; он же построил первые примеры таких чисел. Лиувилль заметил, что алебраические числа не могут «слишком хорошо» приближаться рациональными числами . Именно, теорема Лиувилля гласит, что если алгебраическое число является корнем многочлена степени с рациональными коэффициентами, то для любого рационального числа справедливо неравенство

где постоянная зависит только от. Из этого утверждения следует достаточный признак трансцендентности: если число таково, что для любой постоянной существует бесконечное множество рациональных чисел, удовлетворяющих неравенствам

то трансцендентно. Впоследствии такие числа получили название чисел Лиувилля. Примером такого числа является

Другое доказательство существования трансцендентных чисел было получено Г. Кантором в 1874 г. на основе созданной им теории множеств. Кантор доказал счётность множества алгебраических чисел и несчётность множества действительных чисел, откуда следует, что множество трансцендентных чисел несчётно. Однако, в отличие от доказательства Лиувилля, эти рассуждения не позволяют привести пример хотя бы одного такого числа.

Работа Лиувилля дала начало целому разделу теории трансцендентных чисел — теории приближения алгебраических чисел рациональными или, более общо, алгебраическими числами. Теорема Лиувилля усиливалась и обобщалась в работах многих математиков. Это позволило построить новые примеры трансцендентных чисел. Так, К. Малер показал, что если — непостоянный многочлен, принимающий целые неотрицательные значения при всех натуральных, то для любого натурального число, где — запись числа в системе счисления с основанием, является трансцендентным, но не является числом Лиувилля. Например, при и получаем следующий изящный результат: число

трансцендентно, но не является числом Лиувилля.

В 1873 г. Ш. Эрмит, используя другие идеи, доказал трансцендентность неперова числа (основания натурального логарифма):

Развив идеи Эрмита, Ф. Линдеман в 1882 г. доказал трансцендентность числа, тем самым поставив точку в древней проблеме о квадратуре круга: с помощью циркуля и линейки невозможно построить квадрат, равновеликий (то есть имеющий ту же площадь) данному кругу. Более общо, Линдеман показал, что при любом алгебраическом число трансцендентно. Эквивалентная формулировка: для любого алгебраического числа, отличного от и, его натуральный логарифм является трансцендентым числом.

В 1900 г. на конгрессе математиков в Париже Д. Гильберт среди 23 нерешённых проблем математики указал на следующую, в частной форме сформулированную ещё Л. Эйлером :

Пусть и — алгебраические числа, причём трансцендентным? В частности, трансцендентны ли числа и?

Эта проблема может быть переформулирована в следующей форме, близкой к оригинальной формулировке Эйлера:

Пусть и — алгебраические числа, отличные от и, причём отношение их натуральных логарифмов иррационально. Будет ли число трансцендентным?

Первое частичное решение проблемы было получено в 1929 г. А. О. Гельфондом, который, в частности, доказал трансцендентность числа. В 1930 г. Р. О. Кузьмин усовершенствовал метод Гельфонда, в частности, ему удалось доказать трансцендентность числа. Полное решение проблемы Эйлера-Гильберта (в утвердительном смысле) было получено в 1934 г. независимо А. О. Гельфондом и Т. Шнайдером.

А. Бейкер в 1966 обобщил теоремы Линдемана и Гельфонда-Шнайдера, доказав, в частности, трансцендентность произведения произвольного конечного количества чисел вида и с алгебраическими при естественных ограничениях.

В 1996г. Ю.В. Нестеренко доказал алгебраическую независимость значений рядов Эйзенштейна и, в частности, чисел и. Это означает трансцендентность любого числа вида, где отличная от нуля рациональная функция с алгебраическими коэффициентами. Например, трансцендентной будет сумма ряда

В 1929-1930 гг. К. Малер в серии работ предложил новый метод доказательства трансцендентности значений аналитических функций, удовлетворяющих функциональным уравнениям определённого вида (впоследствии такие функции получили название функций Малера).

Методы теории трансцендентных чисел нашли применение и в других разделах математики, в частности в теории диофантовых уравнений.

которое при a = 1 служило нам для определения суммы геометрической прогрессии. Предполагая теорему Гаусса доказанной, допустим, что a = a 1 есть корень уравнения (17), так что

) = a n + a

a n−1

a n−2

a 1 + a

Вычитая это выражение из f(x) и перегруппировывая члены, мы получим тождество

f(x) = f(x) − f(a1 ) = (xn − a n 1 ) + an−1 (xn−1 − a n 1 −1 ) + . . . + a1 (x − a1 ).

(21) Пользуясь теперь формулой (20), мы можем выделить множитель x − a 1 из каждого члена и затем вынести его за скобку, причем степень многочлена, остающегося в скобках, станет уже на единицу меньше. Перегруппировывая снова члены, мы получим тождество

f(x) = (x − a1 )g(x),

где g(x) - многочлен степени n − 1:

g(x) = xn−1 + bn−2 xn−2 + . . . + b1 x + b0 .

(Вычисление коэффициентов, обозначенных через b, нас здесь не интересует.) Применим дальше то же рассуждение к многочлену g(x). По теореме Гаусса, существует корень a2 уравнения g(x) = 0, так что

g(x) = (x − a2 )h(x),

где h(x) - новый многочлен степени уже n − 2. Повторяя эти рассуждения n − 1 раз (подразумевается, конечно, применение принципа математической индукции), мы, в конце концов, приходим к разложению

f(x) = (x − a1 )(x − a2 ) . . . (x − an ).

Из тождества (22) следует не только то, что комплексные числа a1 , a2 ,

An суть корни уравнения (17), но и то, что иных корней уравнение (17) не имеет. Действительно, если бы число y было корнем уравнения (17), то из (22) следовало бы

f(y) = (y − a1 )(y − a2 ) . . . (y − an ) = 0.

Но мы видели (стр. 115 ), что произведение комплексных чисел равно нулю в том и только том случае, если один из множителей равен нулю. Итак, один из множителей y − ar равен 0, т. е. y = ar , что и требовалось установить.

§ 6.

1. Определение и вопросы существования. Алгебраическим числом называется всякое число x, действительное или мнимое, удовлетворяющее некоторому алгебраическому уравнению вида

an xn + an−1 xn−1 + . . . + a1 x + a0 = 0 (n > 1, an 6= 0),

130 МАТЕМАТИЧЕСКАЯ ЧИСЛОВАЯ СИСТЕМА гл. II

где числа ai целые. Так, например, число 2 алгебраическое, так как оно удовлетворяет уравнению

x2 − 2 = 0.

Таким же образом алгебраическим числом является всякий корень любого уравнения с целыми коэффициентами третьей, четвертой, пятой, какой угодно степени, и независимо от того, выражается или не выражается он в радикалах. Понятие алгебраического числа есть естественное обобщение понятия рационального числа, которое соответствует частному случаю n = 1.

Не всякое действительное число является алгебраическим. Это вытекает из следующей, высказанной Кантором, теоремы: множество всех алгебраических чисел счетно. Так как множество всех действительных чисел несчетное, то обязательно должны существовать действительные числа, не являющиеся алгебраическими.

Укажем один из методов пересчета множества алгебраических чисел. Каждому уравнению вида (1) сопоставим целое положительное число

h = |an | + |an−1 | + . . . + |a1 | + |a0 | + n,

которое назовем ради краткости «высотой» уравнения. Для каждого фиксированного значения n существует лишь конечное число уравнений вида (1) с высотой h. Каждое из таких уравнений имеет самое большее n корней. Поэтому может существовать лишь конечное число алгебраических чисел, порождаемых уравнениями с высотой h; следовательно, все алгебраические числа можно расположить в виде последовательности, перечисляя сначала те из них, которые порождаются уравнениями высоты 1, затем - высоты 2 и т. д.

Это доказательство счетности множества алгебраических чисел устанавливает существование действительных чисел, которые не являются алгебраическими. Такие числа называют трансцендентными (от латинского transcendere - переходить, превосходить); такое наименование им дал Эйлер, потому что они «превосходят мощность алгебраических методов».

Канторово доказательство существования трансцендентных чисел не принадлежит к числу конструктивных. Теоретически рассуждая, можно было бы построить трансцендентное число с помощью диагональной процедуры, производимой над воображаемым списком десятичных разложений всех алгебраических чисел; но такая процедура лишена всякого практического значения и не привела бы к числу, разложение которого в десятичную (или какую-нибудь иную) дробь можно было бы на самом деле написать. Наиболее интересные проблемы, связанные с трансцендентными числами, заключаются в доказательстве того, что определенные, конкретные числа (сюда относятся числа p и e, о которых см. стр. 319 –322 ) являются трансцендентными.

АЛГЕБРАИЧЕСКИЕ И ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА

**2. Теорема Лиувилля и конструирование трансцендентных чисел. Доказательство существования трансцендентных чисел еще до Кантора было дано Ж. Лиувиллем (1809–1862). Оно дает возможность на самом деле конструировать примеры таких чисел. Доказательство Лиувилля более трудно, чем доказательство Кантора, и это неудивительно, так как сконструировать пример, вообще говоря, сложнее, чем доказать существование. Приводя ниже доказательство Лиувилля, мы имеем в виду только подготовленного читателя, хотя для понимания доказательства совершенно достаточно знания элементарной математики.

Как обнаружил Лиувилль, иррациональные алгебраические числа обладают тем свойством, что они не могут быть приближены рациональными числами с очень большой степенью точности, если только не взять знаменатели приближающих дробей чрезвычайно большими.

Предположим, что число z удовлетворяет алгебраическому уравнению с целыми коэффициентами

f(x) = a0 + a1 x + a2 x2 + . . . + an xn = 0 (an 6= 0),

но не удовлетворяет такому же уравнению более низкой степени. Тогда

говорят, что само x есть алгебраическое число степени n. Так, например,

число z = 2 есть алгебраическое число степени 2, так как удовлетворяет уравнению x2 − 2 = 0√ степени 2, но не удовлетворяет уравнению первой степени; число z = 3 2 - степени 3, так как удовлетворяет уравнению x3 − 2 = 0, но не удовлетворяет (как мы покажем в главе III) уравнению более низкой степени. Алгебраическое число степени n > 1

не может быть рациональным, так как рациональное число z = p q удо-

влетворяет уравнению qx − p = 0 степени 1. Каждое иррациональное число z может быть с какой угодно степенью точности приближено с помощью рационального числа; это означает, что всегда можно указать последовательность рациональных чисел

p 1 , p 2 , . . .

q 1 q 2

с неограниченно растущими знаменателями, обладающую тем свой-

ством, что

p r → z. qr

Теорема Лиувилля утверждает: каково бы ни было алгебраическое число z степени n > 1, оно не может быть приближено посредством раци-

достаточно больших знаменателях непременно выполняется неравенство

z − p q

> q n1 +1 .

МАТЕМАТИЧЕСКАЯ ЧИСЛОВАЯ СИСТЕМА

Мы собираемся привести доказательство этой теоремы, но раньше покажем, как с ее помощью можно строить трансцендентные числа. Рассмотрим число

z = a1 · 10−1! + a2 · 10−2! + a3 · 10−3! + . . . + am · 10−m! + . . . = = 0,a1 a2 000a3 00000000000000000a4 000 . . . ,

где ai обозначают произвольные цифры от 1 до 9 (проще всего было бы положить все ai равными 1), а символ n!, как обычно (см. стр. 36 ), обозначает 1 · 2 · . . . · n. Характерным свойством десятичного разложения такого числа является то, что быстро возрастающие по своей длине группы нулей чередуются в нем с отдельными цифрами, отличными от нуля. Обозначим через zm конечную десятичную дробь, получающуюся, когда в разложении возьмем все члены до am · 10−m! включительно. Тогда получим неравенство

Предположим, что z было бы алгебраическим числом степени n. Тогда, полагая в неравенстве Лиувилля (3) p q = zm = 10 p m! , мы должны иметь

|z − zm | > 10 (n+1)m!

при достаточно больших значениях m. Сопоставление последнего неравенства с неравенством (4) дает

10 (n+1)m!

10 (m+1)!

10 (m+1)!−1

откуда следует (n + 1)m! > (m + 1)! − 1 при достаточно больших m. Но это неверно для значений m, больших чем n (пусть читатель потрудится дать детализированное доказательство этого утверждения). Мы пришли к противоречию. Итак, число z - трансцендентное.

Остается доказать теорему Лиувилля. Предположим, что z - алгебраическое число степени n > 1, удовлетворяющее уравнению (1), так что

f(zm ) = f(zm ) − f(z) = a1 (zm − z) + a2 (zm 2 − z2 ) + . . . + an (zm n − zn ).

Деля обе части на zm − z и пользуясь алгебраической формулой

u n − v n = un−1 + un−2 v + un−3 v2 + . . . + uvn−2 + vn−1 , u − v

мы получаем:

f(zm )

A1 + a2 (zm + z) + a3 (zm 2 + zm z + z2 ) + . . .

zm − z

An (zm n−1 + . . . + zn−1 ). (6)

АЛГЕБРАИЧЕСКИЕ И ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА

Так как zm стремится к z, то при достаточно больших m рациональное число zm будет отличаться от z меньше чем на единицу. Поэтому при достаточно больших m можно сделать следующую грубую оценку:

f(zm )

< |a1 | + 2|a2 |(|z| + 1) + 3|a3 |(|z| + 1)2

zm − z

N|an |(|z| + 1)n−1 = M, (7)

причем стоящее справа число M - постоянное, так как z не меняется в процессе доказательства. Выберем теперь m настолько большим, чтобы

у дроби z m = p m знаменатель q m был больше, чем M; тогда qm

|z − zm | >

|f(zm )|

|f(zm )|

|f(zm )| =

−q n

1 p + . . . + a

Рациональное число zm =

не может быть корнем уравнения

так как тогда можно было бы из многочлена f(x) выделить множитель (x − zm ), и, значит, z удовлетворяло бы уравнению степени низшей чем n. Итак, f(zm ) 6= 0. Но числитель в правой части равенства (9) есть целое число и, следовательно, по абсолютной величине он по меньшей мере равен единице. Таким образом, из сопоставления соотношений (8) и (9) вытекает неравенство

|z − zm | >

q n+1

как раз и составляющее содержание указываемой теоремы.

На протяжении нескольких последних десятилетий исследования, касающиеся возможности приближения алгебраических чисел рациональными, продвинулись гораздо дальше. Например, норвежский математик А. Туэ (1863–1922) установил, что в неравенстве Лиувилля (3) показатель n + 1 может быть заменен меньшим показателем n 2 + 1.

К. Л. Зигель показал, что можно взять и еще меньший (еще меньший

при б´ольших n) показатель 2 n.

Трансцендентные числа всегда были темой, приковывающей к себе внимание математиков. Но до сравнительно недавнего времени среди чисел, которые интересны сами по себе, было известно очень немного таких, трансцендентный характер которых был бы установлен. (Из трансцендентности числа p, о которой пойдет речь в главе III, следует невозможность квадратуры круга с помощью линейки и циркуля.) В своем выступлении на Парижском международном математическом конгрессе 1900 г. Давид Гильберт предложил тридцать математических

АЛГЕБРА МНОЖЕСТВ

проблем, допускающих простую формулировку, некоторые - даже совсем элементарную и популярную, из которых ни одна не только не была решена, но даже и не казалась способной быть разрешенной средствами математики той эпохи. Эти «проблемы Гильберта» оказали сильное возбуждающее влияние на протяжении всего последующего периода развития математики. Почти все они мало-помалу были разрешены, и во многих случаях их решение было связано с ясно выраженными успехами в смысле выработки более общих и более глубоких методов. Одна из проблем, казавшаяся довольно безнадежной, заключалась в

доказательстве того, что число

является трансцендентным (или хотя бы иррациональным). На протяжении трех десятилетий не было даже намека на такой подход к вопросу с чьей-нибудь стороны, который открывал бы надежду на успех. Наконец, Зигель и, независимо от него, молодой русский математик А. Гельфонд открыли новые методы для доказательства трансцендентности многих

чисел, имеющих значение в математике. В частности, была установлена

трансцендентность не только гильбертова числа 2 2 , но и целого довольно обширного класса чисел вида ab , где a - алгебраическое число, отличное от 0 и 1, a b - иррациональное алгебраическое число.

ДОПОЛНЕНИЕ К ГЛАВЕ II

Алгебра множеств

1. Общая теория. Понятие класса, или совокупности, или множества объектов - одно из самых фундаментальных в математике. Множество определяется некоторым свойством («атрибутом») A, которым должен или обладать, или не обладать каждый рассматриваемый объект; те объекты, которые обладают свойством A, образуют множество A. Так, если мы рассматриваем целые числа и свойство A заключается в том, чтобы «быть простым», то соответствующее множество A состоит из всех простых чисел 2, 3, 5, 7, . . .

Математическая теория множеств исходит из того, что из множеств с помощью определенных операций можно образовывать новые множества (подобно тому как из чисел посредством операций сложения и умножения получаются новые числа). Изучение операций над множествами составляет предмет «алгебры множеств», которая имеет много общего с обыкновенной числовой алгеброй, хотя кое в чем и отличается от нее. Тот факт, что алгебраические методы могут быть применены к изучению нечисловых объектов, каковыми являются множества, иллю-

АЛГЕБРА МНОЖЕСТВ

стрирует большую общность идей современной математики. В последнее время выяснилось, что алгебра множеств бросает новый свет на многие области математики, например, теорию меры и теорию вероятностей; она полезна также при систематизации математических понятий и выяснении их логических связей.

В дальнейшем I будет обозначать некоторое постоянное множество объектов, природа которых безразлична, и которое мы можем называть универсальным множеством (или универсумом рассуждения), а

A, B, C, . . . будут какие-то подмножества I. Если I есть совокупность всех натуральных чисел, то A, скажем, может обозначать множество всех четных чисел, B - множество всех нечетных чисел, C - множество всех простых чисел, и т. п. Если I обозначает совокупность всех точек на плоскости, то A может быть множеством точек внутри какого-то круга, B - множеством точек внутри другого круга и т. п. В число «подмножеств» нам удобно включить само I, а также «пустое» множество, не содержащее никаких элементов. Цель, которую преследует такое искусственное расширение, заключается в сохранении того положения, что каждому свойству A соответствует некоторое множество элементов из I, обладающих этим свойством. В случае, если A есть универсально выполняемое свойство, примером которого может служить (если речь идет о числах) свойство удовлетворять тривиальному равенству x = x, то соответствующее подмножество I будет само I, так как каждый элемент обладает таким свойством; с другой стороны, если A есть какое-то внутренне противоречивое свойство (вроде x 6= x), то соответствующее подмножество не содержит вовсе элементов, оно - «пустое» и обозначается символом.

Говорят, что множество A есть подмножество множества B, короче, «A входит в B», или «B содержит A», если во множестве A нет такого элемента, который не был бы также во множестве B. Этому соотношению соответствует запись

A B, или B A.

Например, множество A всех целых чисел, делящихся на 10, есть подмножество множества B всех целых чисел, делящихся на 5, так как каждое число, делящееся на 10, делится также на 5. Соотношение A B не исключает соотношения B A. Если имеет место и то и другое, то

Это означает, что каждый элемент A есть вместе с тем элемент B, и обратно, так что множества A и B содержат как раз одни и те же элементы.

Соотношение A B между множествами во многих отношениях напоминает соотношение a 6 b между числами. В частности, отметим сле-

АЛГЕБРА МНОЖЕСТВ

дующие свойства этого соотношения:

1) A A.

2) Если A B и B A, то A = B.

3) Если A B и B C, то A C.

По этой причине соотношение A B иногда называют «отношением порядка». Главное отличие рассматриваемого соотношения от соотношения a 6 b между числами заключается в том, что между всякими двумя заданными (действительными) числами a и b непременно осуществляется по меньшей мере одно из соотношений a 6 b или b 6 a, тогда как для соотношения A B между множествами аналогичное утверждение неверно. Например, если A есть множество, состоящее из чисел 1, 2, 3,

а B - множество, состоящее из чисел 2, 3, 4,

то не имеет места ни соотношение A B, ни соотношение B A. По этой причине говорят, что подмножества A, B, C, . . . множества I являются «частично упорядоченными», тогда как действительные числа a, b, c, . . .

образуют «вполне упорядоченную» совокупность.

Заметим, между прочим, что из определения соотношения A B следует, что, каково бы ни было подмножество A множества I,

Свойство 4) может показаться несколько парадоксальным, но, если вдуматься, оно логически строго соответствует точному смыслу определения знака. В самом деле, соотношение A нарушалось бы только

в том случае, если бы пустое множество содержало элемент, который не содержался бы в A; но так как пустое множество не содержит вовсе элементов, то этого быть не может, каково бы ни было A.

Мы определим теперь две операции над множествами, формально обладающие многими алгебраическими свойствами сложения и умножения чисел, хотя по своему внутреннему содержанию совершенно отличные от этих арифметических действий. Пусть A и B - какие-то два множества. Под объединением, или «логической суммой», A и B понимается множество, состоящее из тех элементов, которые содержатся или в A, или

в B (включая и те элементы, которые содержатся и в A и в B). Это множество обозначается A + B. 1 Под «пересечением», или «логическим произведением», A и B понимается множество, состоящее из тех элементов, которые содержатся и в A и в B. Это множество обозначается AB.2

Среди важных алгебраических свойств операций A + B и AB перечислим следующие. Читатель сможет проверить их справедливость, исходя из определения самих операций:

A + (B + C) = (A + B) + C. 9)

A(B + C) = AB + AC.

A + (BC) = (A + B)(A + C).

Соотношение A B эквивалентно каждому из двух соотношений

Проверка всех этих законов - дело самой элементарной логики. Например, правило 10) констатирует, что множество элементов, содержащихся или в A, или в A, есть как раз множество A; правило 12) констатирует, что множество тех элементов, которые содержатся в A и вместе с тем содержатся или в B, или в C, совпадает со множеством элементов, которые или содержатся одновременно в A и в B, или содержатся одновременно в A и в C. Логические рассуждения, используемые при доказательствах подобного рода правил, удобно иллюстрируются, если мы условимся изображать множества A, B, C, . . . в виде некоторых фигур на плоскости и будем очень внимательны в том отношении, чтобы не упустить ни одной из возникающих логических возможностей, когда речь идет о наличии общих элементов двух множеств или, напротив, наличии в одном множестве элементов, которые не содержатся в другом.

АЛГЕБРА МНОЖЕСТВ

Читатель, несомненно, обратил внимание на то обстоятельство, что законы 6), 7), 8), 9) и 12) внешне тождественны с хорошо знакомыми коммутативным, ассоциативным и дистрибутивным законами обыкновенной алгебры. Отсюда следует, что все правила обыкновенной алгебры, вытекающие из этих законов, действительны также в алгебре множеств. Напротив, законы 10), 11) и 13) не имеют своих аналогов в обыкновенной алгебре, и они придают алгебре множеств более простую структуру. Например, формула бинома в алгебре множеств сводится к простейшему равенству

(A + B)n = (A + B) · (A + B) . . . (A + B) = A + B,

которое следует из закона 11). Законы 14), 15) и 17) говорят о том, что свойства множеств и I по отношению к операциям объединения и пересечения множеств весьма похожи на свойства чисел 0 и 1 по отношению к операциям числовых действий сложения и умножения. Но закон 16) не имеет аналога в числовой алгебре.

Остается дать определение еще одной операции в алгебре множеств. Пусть A - какое-нибудь подмножество универсального множества I. Тогда под дополнением A в I понимается множество всех элементов I, которые не содержатся в A. Для этого множества мы введем обозначение A0 . Так, если I есть множество всех натуральных чисел, а A - множество всех простых чисел, то A0 есть множество, состоящее из всех составных чисел и числа 1. Операция перехода от A к A0 , для которой нет аналога в обыкновенной алгебре, обладает следующими свойствами:

A + A0 = I.

AA0 = .

0 = I.

I0 = .

23) A 00 = A.

24) Соотношение A B эквивалентно соотношению B 0 A0 .

25) (A + B)0 = A0 B0 . 26) (AB)0 = A0 + B0 .

Проверку этих свойств мы опять предоставляем читателю.

Законы 1)–26) лежат в основе алгебры множеств. Они обладают замечательным свойством «двойственности» в следующем смысле:

Если в одном из законов 1)–26) заменить друг на друга соответ-

(в каждом их вхождении), то в результате снова получается один из этих же законов. Например, закон 6) переходит в закон 7), 12) - в 13), 17) - в 16) и т. д. Отсюда следует, что каждой теореме, которая может быть выведена из законов 1)–26), соответствует другая, «двойственная» ей теорема, получающаяся из первой посредством указанных перестановок символов. В самом деле, так как доказательство

гл. II АЛГЕБРА МНОЖЕСТВ 139

первой теоремы состоит из последовательного применения (на различных стадиях проводимого рассуждения) некоторых из законов 1–26), то применение на соответствующих стадиях «двойственных» законов составит доказательство «двойственной» теоремы. (По поводу подобной же «двойственности» в геометрии см. главу IV.)

2. Применение к математической логике. Проверка законов алгебры множеств основывалась на анализе логического смысла соотношения A B и операций A + B, AB и A0 . Мы можем теперь обратить этот процесс и рассматривать законы 1)–26) как базу для «алгебры логики». Скажем точнее: та часть логики, которая касается множеств, или, что по существу то же, свойств рассматриваемых объектов, может быть сведена к формальной алгебраической системе, основанной на законах 1)–26). Логическая «условная вселенная» определяет множество I; каждое свойство A определяет множество A, состоящее из тех объектов в I, которые обладают этим свойством. Правила перевода обычной логической терминологии на язык множеств ясны из

следующих примеров:

«Ни A, ни B»

(A + B)0 , или, что то же, A0 B0

«Неверно, что и A, и B»

(AB)0 , или, что то же, A0 + B0

есть B»,или

«Если A, то B»,

«Из A следует B»

«Какое-то A есть B»

«Никакое A не есть B»

AB =

«Какое-то A не есть B»

AB0 6=

«Нет никакого A»

В терминах алгебры множеств силлогизм «Barbara», обозначающий, что «если всякое A есть B и всякое B есть C, то всякое A есть C», принимает простой вид:

3) Если A B и B C, то A C.

Аналогично «закон противоречия», утверждающий, что «объект не может одновременно обладать и не обладать некоторым свойством», записывается в виде:

20) AA 0 = ,

а «закон исключенного третьего», говорящий, что «объект должен или обладать, или не обладать некоторым свойством», записывается:

19) A + A 0 = I.

АЛГЕБРА МНОЖЕСТВ

Таким образом, та часть логики, которая выразима в терминах символов, +, · и 0 , может трактоваться как формальная алгебраическая система, подчиненная законам 1)–26). На основе слияния логического анализа математики и математического анализа логики создалась новая дисциплина - математическая логика, которая в настоящее время находится в процессе бурного развития.

С аксиоматической точки зрения заслуживает внимания тот замечательный факт, что утверждения 1)–26), вместе со всеми прочими теоремами алгебры множеств, могут быть логически выведены из следующих трех равенств:

27) A + B = B + A,

(A + B) + C = A + (B + C),

(A0 + B0 )0 + (A0 + B)0 = A.

Отсюда следует, что алгебра множеств может быть построена как чисто дедуктивная теория, вроде евклидовой геометрии, на базе этих трех положений, принимаемых в качестве аксиом. Если эти аксиомы приняты, то операция AB и отношение A B определяются в терминах A + B и A0 :

обозначает множество (A0 + B0 )0 ,

B обозначает, что A + B = B.

Совершенно иного рода пример математической системы, в которой выполняются все формальные законы алгебры множеств, дается системой восьми чисел 1, 2, 3, 5, 6, 10, 15, 30: здесь a + b обозначает, по

определению, общее наименьшее кратное a и b, ab - общий наибольший делитель a и b, a b - утверждение «b делится на a» и a0 - число 30 a . Су-

ществование таких примеров повлекло за собой изучение общих алгебраических систем, удовлетворяющих законам 27). Такие системы называются «булевыми алгебрами» - в честь Джорджа Буля (1815–1864), английского математика и логика, книга которого «An investigation of the laws of thought» (Исследование законов мышления) появилась в 1854 г.

3. Одно из применений к теории вероятностей. Алгебра множеств имеет ближайшее отношение к теории вероятностей и позволяет взглянуть на нее в новом свете. Рассмотрим простейший пример: представим себе эксперимент с конечным числом возможных исходов, которые все мыслятся как «равновозможные». Эксперимент может, например, заключаться в том, что мы вытягиваем наугад карту из хорошо перетасованной полной колоды. Если множество всех исходов эксперимента обозначим через I, а A обозначает какое-нибудь подмножество I, то вероятность того, что исход эксперимента окажется принадлежащим к подмножеству A, определяется как отношение

p(A) = число элементов A . число элементов I

АЛГЕБРА МНОЖЕСТВ

Если условимся число элементов в каком-нибудь множестве A обозначать через n(A), то последнему равенству можно придать вид

В нашем примере, допуская, что A есть подмножество треф, мы полу-

чим n(A) = 13, n(I) = 52 и p(A) =

Идеи алгебры множеств обнаруживаются при вычислении вероятностей тогда, когда приходится, зная вероятности одних множеств, вычислять вероятности других. Например, зная вероятности p(A), p(B) и p(AB), можно вычислить вероятность p(A + B):

p(A + B) = p(A) + p(B) − p(AB).

Доказать это не составит труда. Мы имеем

n(A + B) = n(A) + n(B) − n(AB),

так как элементы, содержащиеся одновременно в A и в B, т. е. элементы AB, считаются дважды при вычислении суммы n(A) + n(B), и, значит, нужно вычесть n(AB) из этой суммы, чтобы подсчет n(A + B) был произведен правильно. Деля затем обе части равенства на n(I), мы получаем соотношение (2).

Более интересная формула получается, если речь идет о трех множествах A, B, C из I. Пользуясь соотношением (2), мы имеем

p(A + B + C) = p[(A + B) + C] = p(A + B) + p(C) − p[(A + B)C].

Закон (12) из предыдущего пункта дает нам (A + B)C = AC + BC. Отсюда следует:

p[(A + B)C)] = p(AC + BC) = p(AC) + p(BC) − p(ABC).

Подставляя в полученное раньше соотношение значение p[(A + B)C] и значение p(A + B), взятое из (2), мы приходим к нужной нам формуле:

p(A + B + C) = p(A) + p(B) + p(C) − p(AB) − p(AC) − p(BC) + p(ABC). (3)

В качестве примера рассмотрим следующий эксперимент. Три цифры 1, 2, 3 пишутся в каком попало порядке. Какова вероятность того, что по крайней мере одна из цифр окажется на надлежащем (в смысле нумерации) месте? Пусть A есть множество перестановок, в которых цифра 1 стоит на первом месте, B - множество перестановок, в которых цифра 2 стоит на втором месте, C - множество перестановок, в которых цифра 3 стоит на третьем месте. Нам нужно вычислить p(A + B + C). Ясно, что

p(A) = p(B) = p(C) = 2 6 = 1 3 ;

действительно, если какая-нибудь цифра стоит на надлежащем месте, то имеются две возможности переставить остальные две цифры из общего числа 3 · 2 · 1 = 6 возможных перестановок трех цифр. Далее,

Упражнение. Выведите соответствующую формулу для p(A + B + C + D) и примените ее к эксперименту, в котором будут участвовать 4 цифры. Соответствующая вероятность равна 5 8 = 0,6250.

Общая формула для объединения n множеств имеет вид

p(A1 + A2 + . . . + An ) =

p(Ai ) −

p(Ai Aj ) + p(Ai Aj Ak ) − . . . ± p(A1 A2 . . . An ), (4)

где символы

обозначают суммирование по всем возможным

комбинациям, содержащим одну, две, три, . . . , (n − 1) букв из числа A1 , A2 , . . .

An. Эта формула может быть установлена посредством математической индукции - точно так же, как формула (3) была выведена из формулы (2).

Из формулы (4) можно заключить, что если n цифр 1, 2, 3, . . . , n написаны в каком угодно порядке, то вероятность того, что по крайней мере одна из цифр окажется на надлежащем месте, равна

pn = 1 −

причем перед последним членом стоит знак + или −, смотря по тому, является ли n четным или нечетным. В частности, при n = 5 эта вероятность равна

p5 = 1 − 2! + 3! − 4! + 5! = 30 = 0,6333 . . .

В главе VIII мы увидим, что, когда n стремится к бесконечности, выражение

1 1 1 1 Sn = 2! − 3! + 4! − . . . ± n!

стремится к пределу 1 e , значение которого, с пятью знаками после запятой,

равно 0,36788. Так как из формулы (5) видно, что pn = 1 − Sn, то отсюда следует, что при n → ∞

pn → 1 − e ≈ 0,63212.

Число называется алгебраическим , если оно является корнем некоторого многочлена с целыми коэффициентами

a n x n +a n-1 x n-1 +... +a 1 x+a 0 (т. е. корнем уравнения a n x n +a n-1 x n-1 +... +a 1 x+a 0 =0 , где a n , a n-1 , ..., a 1 , a 0 --- целые числа, n 1 , a n 0 ).

Множество алгебраических чисел обозначим буквой .

Легко видеть, что любое рациональное число является алгебраическим. Действительно, - корень уравнения qx-p=0 с целыми коэффициентами a 1 =q и a 0 =-p . Итак, .

Однако не все алгебраические числа рациональны: например, число является корнем уравнения x 2 -2=0 , следовательно, --- алгебраическое число.

Долгое время оставался нерешенным важный для математики вопрос: Существуют ли неалгебраические действительные числа? Только в 1844 году Лиувилль впервые привел пример трансцендентного (т. е. неалгебраического) числа.

Построение этого числа и доказательство его трансцендентности очень сложны. Доказать теорему существования трансцендентных чисел можно значительно проще, используя соображения об эквивалентности и неэквивалентности числовых множеств.

А именно, докажем, что множество алгебраических чисел счетно. Тогда, поскольку множество всех действительных чисел несчетно, мы установим существование неалгебраических чисел.

Построим взаимно однозначное соответствие между и некоторым подмножеством . Это будет означать, что - конечно либо счетно. Но поскольку , то бесконечно, и значит, счетно.

Пусть - некоторое алгебраическое число. Рассмотрим все многочлены с целыми коэффициентами, корнем которых является , и выберем среди них многочлен P минимальной степени (т. е. не будет корнем никакого многочлена с целыми коэффициентами меньшей степени).

Например, для рационального числа такой многочлен имеет степень 1, а для числа - степень 2.

Разделим все коэффициенты многочлена P на их наибольший общий делитель. Получим многочлен, коэффициенты которого взаимно просты в совокупности (их наибольший общий делитель равен 1). Наконец, если старший коэффициент a n отрицателен, умножим все коэффициенты многочлена на -1 .

Полученный многочлен (т. е. многочлен с целыми коэффициентами, корнем которого является число , имеющий минимально возможную степень, взаимно простые коэффициенты и положительный старший коэффициент) называется минимальным многочленом числа .

Можно доказать, что такой многочлен определяется однозначно: каждое алгебраическое число имеет ровно один минимальный многочлен.

Количество действительных корней многочлена не больше чем его степень. Значит, можно пронумеровать (например, по возрастанию) все корни такого многочлена.

Теперь всякое алгебраическое число полностью определяется своим минимальным многочленом (т. е. набором его коэффициентов) и номером, который отличает от других корней этого многочлена: (a 0 ,a 1 ,...,a n-1 ,a n ,k).


Итак, каждому алгебраическому числу мы поставили в соответствие конечный набор целых чисел, причем по этому набору восстанавливается однозначно (т. е. разным числам соответствуют разные наборы).

Пронумеруем в порядке возрастания все простые числа (нетрудно показать, что их бесконечно много). Получим бесконечную последовательность {p k } : p 1 =2 ,p 2 =3 , p 3 =5 , p 4 =7 , ... Теперь набору целых чисел (a 0 ,a 1 ,...,a n-1 ,a n ,k) можно поставить в соответствие произведение

(это число положительное и рациональное, но не всегда натуральное, ведь среди чисел a 0 , a 1 , ..., a n-1 , могут быть отрицательные). Заметим, что это число есть несократимая дробь, поскольку простые множители, входящие в разложения числителя и знаменателя, различны. Заметим также, что две несократимые дроби с положительными числителями и знаменателями равны тогда и только тогда, когда и их числители равны, и их знаменатели равны.

Рассмотрим теперь сквозное отображение:

(a 0 ,a 1 ,...,a n-1 ,a n ,k) =

Поскольку разным алгебраическим числам мы поставили в соответствие разные наборы целых чисел, а разным наборам --- разные рациональные числа, то мы, таким образом, установили взаимно однозначное соответствие между множеством и некоторым подмножеством . Поэтому множество алгебраических чисел счетно.

Так как множество действительных чисел несчетно, то мы доказали существование неалгебраических чисел.

Однако теорема существования не указывает как определить, является ли данное число алгебраическим. А этот вопрос иногда является весьма важным для математики.

Слово «трансцендентный» обычно ассоциируется с трансцендентальной медитацией и разнообразной эзотерикой. Но чтобы употреблять его правильно, нужно как минимум отличать его от термина «трансцендентальный», а как максимум - вспомнить его роль в работах Канта и других философов.

Это понятие произошло от латинского transcendens - «переступающий», «превосходящий», «выходящий за пределы». В целом он обозначает то, что принципиально недоступно для эмпирического познания или не основано на опыте. Предпосылки термина возникли еще в философии неоплатонизма - основатель направления Плотин создал учение о Едином - всеблагом первоначале, которое невозможно познать ни усилием мысли, ни с помощью чувственного опыта. «Единое не есть сущее, но родитель его» - объясняет философ.

Полнее всего термин «трансцендентный» был раскрыт в философии Иммануила Канта, где он использовался для характеристики , существующих независимо от сознания и действующих на наши органы чувств, оставаясь при этом принципиально непознаваемыми, как на практике, так и в теории. Противоположность трансцендентности - : она означает либо неотъемлемость, внутреннюю связь какого-либо качества объекта с самим объектом, либо познаваемость объекта на личном опыте. Например, если предположить, что Вселенная создана по какому-то высшему замыслу, сам замысел для нас трансцендентен - мы можем только строить гипотезы о нем. Но если этот замысел существует в действительности, его последствия для нас имманентны, проявляясь в физических законах и обстоятельствах, в которые мы попадаем. Поэтому в некоторых теологических концепциях Бог трансцендентен и находится вне созданного им бытия.

Некоторые вещи-в-себе все же доступны априорному познанию: например, пространство и время, идеи Бога, добра и красоты, логические категории. То есть трансцендентальные объекты - это, образно говоря, «предустановленные по умолчанию» в нашем разуме

Представление о трансцендентности существует и в математике: трансцендентное число - это число, которое не может быть вычисленным при помощи алгебры или выраженным алгебраически (то есть, не может быть корнем многочлена с целыми коэффициентами, не тождественного нулю). В их число входят, например, числа π и e.

Понятие, близкое к «трансцендентному», но иное по значению - «трансцендентальное». Изначально оно обозначало просто область отвлеченных умственных категорий, а впоследствии его развил Кант, попав в собственную ловушку: построить философскую систему только на эмпирических данных оказалось невозможно, а никаких других источников опыта, кроме эмпирики он не признавал. Чтобы выкрутиться, философу пришлось допустить, что некоторые вещи-в-себе все же доступны априорному познанию: например, пространство и время, идеи Бога, добра и красоты, логические категории. То есть трансцендентальные объекты - это, образно говоря, «предустановленные по умолчанию» в нашем разуме - при этом информация о них существует сама по себе и не следует из нашего опыта.

Существует и еще одно родственное понятие - трансценденция. В широком смысле слова оно означает переход границы между двумя разнородными областями, в особенности переход из сферы посюстороннего в сферу потустороннего, трансцендентного. Для простоты возьмем пример из фантастики: параллельный мир для обычного человека - трансцендентное явление. Но когда герой попадает в этот параллельный мир или каким-то образом оказывается способен его воспринимать, это трансценденция. Или более сложный пример из экзистенциальной философии: Жан-Поль Сартр считал, что человек трансцендентен, поскольку он выходит за рамки любого возможного собственного опыта: мы можем изучать себя и окружающий мир с разных сторон, но никогда даже не приблизимся к полному познанию себя. Но одновременно человек обладает способностью к трансценденции: он трансцендирует любую вещь, придавая ей какое-либо значение. Трансценденция - важный элемент и в религии: она помогает человеку освободиться от своей материальной природы и прикоснуться к чему-то запредельному.

Из философии понятие трансцендентальности перекочевало и в психологию: швейцарский психолог Карл Юнг ввел понятие «трансцендентальная функция» - это функция, объединяющая сознательное и бессознательное. В частности, трансцендентальную функцию может выполнять психоаналитик - он помогает пациенту проанализировать образы бессознательного (например, сновидения) и связать их воедино с сознательными процессами в его психике.

Как говорить

Неправильно «Я записалась на занятия по трансцендентной медитации». Правильно - «трансцендентальной».

Правильно «Когда я захожу в храм, я испытываю чувство слияния с чем-то трансцендентным».

Правильно «Искусство трансцендирует знакомые нам предметы из материального мира, наполняя их высшим смыслом».

  • Каждое трансцендентное вещественное число является иррациональным , но обратное неверно. Например, число \sqrt 2 - иррациональное, но не трансцендентное: оно является корнем многочлена x^2-2 (и потому является алгебраическим).
  • Порядок на множестве вещественных трансцендентных чисел изоморфен порядку на множестве иррациональных чисел.
  • Мера иррациональности почти всякого трансцендентного числа равна 2.
  • Примеры

    История

    Впервые понятие трансцендентного числа ввёл Ж. Лиувилль в 1844 году , когда доказал теорему о том, что алгебраическое число невозможно слишком хорошо приблизить рациональной дробью.

    |заголовок3= Инструменты расширения
    числовых систем |заголовок4= Иерархия чисел |список4=

    -1,\;0,\;1,\;\ldots Целые числа
    -1,\;1,\;\frac{1}{2},\;\;0{,}12,\frac{2}{3},\;\ldots Рациональные числа
    -1,\;1,\;\;0{,}12,\frac{1}{2},\;\pi,\;\sqrt{2},\;\ldots Вещественные числа
    -1,\;\frac{1}{2},\;0{,}12,\;\pi,\;3i+2,\;e^{i\pi/3},\;\ldots Комплексные числа
    1,\;i,\;j,\;k,\;2i + \pi j-\frac{1}{2}k,\;\dots Кватернионы 1,\;i,\;j,\;k,\;l,\;m,\;n,\;o,\;2 - 5l + \frac{\pi}{3}m,\;\dots Трансцендентные числа Числовой луч Бикватернион

    Отрывок, характеризующий Трансцендентное число

    – Как можно быть здоровой… когда нравственно страдаешь? Разве можно оставаться спокойною в наше время, когда есть у человека чувство? – сказала Анна Павловна. – Вы весь вечер у меня, надеюсь?
    – А праздник английского посланника? Нынче середа. Мне надо показаться там, – сказал князь. – Дочь заедет за мной и повезет меня.
    – Я думала, что нынешний праздник отменен. Je vous avoue que toutes ces fetes et tous ces feux d"artifice commencent a devenir insipides. [Признаюсь, все эти праздники и фейерверки становятся несносны.]
    – Ежели бы знали, что вы этого хотите, праздник бы отменили, – сказал князь, по привычке, как заведенные часы, говоря вещи, которым он и не хотел, чтобы верили.
    – Ne me tourmentez pas. Eh bien, qu"a t on decide par rapport a la depeche de Novosiizoff? Vous savez tout. [Не мучьте меня. Ну, что же решили по случаю депеши Новосильцова? Вы все знаете.]
    – Как вам сказать? – сказал князь холодным, скучающим тоном. – Qu"a t on decide? On a decide que Buonaparte a brule ses vaisseaux, et je crois que nous sommes en train de bruler les notres. [Что решили? Решили, что Бонапарте сжег свои корабли; и мы тоже, кажется, готовы сжечь наши.] – Князь Василий говорил всегда лениво, как актер говорит роль старой пиесы. Анна Павловна Шерер, напротив, несмотря на свои сорок лет, была преисполнена оживления и порывов.
    Быть энтузиасткой сделалось ее общественным положением, и иногда, когда ей даже того не хотелось, она, чтобы не обмануть ожиданий людей, знавших ее, делалась энтузиасткой. Сдержанная улыбка, игравшая постоянно на лице Анны Павловны, хотя и не шла к ее отжившим чертам, выражала, как у избалованных детей, постоянное сознание своего милого недостатка, от которого она не хочет, не может и не находит нужным исправляться.
    В середине разговора про политические действия Анна Павловна разгорячилась.
    – Ах, не говорите мне про Австрию! Я ничего не понимаю, может быть, но Австрия никогда не хотела и не хочет войны. Она предает нас. Россия одна должна быть спасительницей Европы. Наш благодетель знает свое высокое призвание и будет верен ему. Вот одно, во что я верю. Нашему доброму и чудному государю предстоит величайшая роль в мире, и он так добродетелен и хорош, что Бог не оставит его, и он исполнит свое призвание задавить гидру революции, которая теперь еще ужаснее в лице этого убийцы и злодея. Мы одни должны искупить кровь праведника… На кого нам надеяться, я вас спрашиваю?… Англия с своим коммерческим духом не поймет и не может понять всю высоту души императора Александра. Она отказалась очистить Мальту. Она хочет видеть, ищет заднюю мысль наших действий. Что они сказали Новосильцову?… Ничего. Они не поняли, они не могут понять самоотвержения нашего императора, который ничего не хочет для себя и всё хочет для блага мира. И что они обещали? Ничего. И что обещали, и того не будет! Пруссия уж объявила, что Бонапарте непобедим и что вся Европа ничего не может против него… И я не верю ни в одном слове ни Гарденбергу, ни Гаугвицу. Cette fameuse neutralite prussienne, ce n"est qu"un piege. [Этот пресловутый нейтралитет Пруссии – только западня.] Я верю в одного Бога и в высокую судьбу нашего милого императора. Он спасет Европу!… – Она вдруг остановилась с улыбкою насмешки над своею горячностью.
    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!